'

Am29PL100 Advanced
Field Programmable Controllers M!cro
Handbook Devices

|

A Spectrum of Choices

Advanced Micro Devices

Am29PL100 Field
Programmable Controller Family

Handbook

© 1988 Advanced Micro Devices

Advanced Micro Devices reserves the right to make changes in its products without notice in
order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited
to implied warranties of merchantability or fitness for a particular application. AMD assumes
no responsibility for the use of any circuitry other than the circuitry embodied in an AMD
product.

The information in this publication is believed to be accurate in all respects at the time of
publication, but is subject to change without notice. AMD assumes no responsibility for any
errors or omissions, and disclaims responsibility for any consequences resulting from the use
of the information included herein. Additionally, AMD assumes no responsibility for the
functioning of undescribed features or parameters.

901 Thompson Place, P.O. Box 3453, Sunnyvale, California 94088
(408) 732-2400 TWX: 910-339-9280 TELEX: 34-6306

DEC, PDP, Q-Bus, and Unibus are registered trademarks of the Digital Equipment Corporation.
IBM PC is a registered trademark of IBM.

SSR is a trademark of Advance Micro Devices.

PAL is a registered trademark of Advanced Micro Devices.

TABLE OF CONTENTS

1.

Field Programmable Controller Overview
1.1 Design Choices
1.2 Am29PL100 Architecture Overview
1.2.1 Address Sequencer
1.2.2 Branch Control/Condition Code Select
1.2.3 Instruction Decode Logic
1.2.4 Program Memory and Pipeline Register
1.3 Microinstruction Format
1.4 Am29PL100 Software Support
1.4.1 PL14X Assembler
1.4.2 PL14X Simulator
1.5 An Overview of this Technical Manual

Tutorial
2.1 Introduction to Microprogramming
2.1.1 Simple Compurt System
2.1.2 Design of Control Unit
2.1.3 Microprogramming Approach
2.1.4 Microsubroutines
2.1.5 Solving Twp Fundamental Problems
2.1.6 Microprogram Counter
2.1.7 Implementing the Branch Instructions
2.1.8 Implementing the Shift Instructions
2.1.9 Machine Language Versus Microprogramming
2.1.10 Control Unit as a Processor
2.1.11 Conclusion
2.2 Am29PL 141 Microprogramming Examples
2.2.1 Example 1: Burst Counter
2.2.2 Example 2: Simple Memory Controller
2.2.3 Example 3: Bus Arbiter
2.2.4 Example 4: VME Bus Arbiter
2.2.5 Example 5: Frame Store
2.2.5.1 Implementing the Buffer Memory
2.2.5.2 Implementing the Display Logic
2.2.5.3 Implementing the Memory Controller
2.3 Control Signal Descriptions
2.4 Instruction Set Description

Article Reprints

3.1 Fuse-programmable Chip Takes Command of Distributed Systems
3.2 FPCs and PLDs Simplify VME Bus Control

3.3 FPCs and PLDs Implement VME Bus Slave Controllers

Coffee Machine Controller Using Am29PL141

DEC PDP-11 Unibus Controller
5.1 The Design Problem

5.2 DEC Unibus Overview

5.3 Interface Hardware Design
5.4 Microword Format

5.5 Unibus Controller Microcode
5.6 Conclusion

dodhdhhArpod L bl

[G N G QI QY (T G i G G Y
]

i

oo o
indo il h

10.

AmM29PL141-Based DEC Q-Bus Controller
6.1 The Design Problem

6.2 Q-Bus Controller Hardware Design

6.3 Microword Format

6.4 Microcode

6.5 Conclusion

Starlan Controller Using Am7990 and Am29PL141
7.1 The Design Problem

7.2 Functional Description

7.3 Microprogram

7.4 PAL Device Equations

7.5 Summary

IBM/PC-SSR Interface Using an Am29PL141 Controller
8.1 The Design Problem

8.2 SSR Functional Description

8.3 Architecture

8.4 PAL Device Equations

8.5 Summary

Quarter-inch Tape Cartridge and Small Computer System
Interface Using Am29PL141
9.1 Overview
9.1.1 QIC-02 Overview
9.1.2 SCSI Overview
9.2 Functional Description
9.2.1 80188 Microprocessing Unit
9.2.2 Dual Channel Bus Controller Architecture
9.2.3 AmPL141 Microprogram
SCSI Interface
QIC-02 Interface
9.3 Advanced Features of SCSI
9.3.1 Selection (Target Reselecting Initiator/Selection as Target)
9.3.2 Arbitration
9.4 Summary

High Speed DMA Controller Using Am29PL 141
10.1 System Overview
10.2 CPU-FPC Interface
10.3 Am29PL141 Controller
PROM Address Control
DMA Address Generator Control
DMA Count Control
Data Bus Interface Control
Instruction Status
Clock Control
10.4 Address Generation
10.5 FPC Microcode

t T
N = =t =2 -

NNNNNY 00000
I IR, YN

00 0 0 o™
oo b bt

©©©©OOOO
AN Y YRR

v
(o]

9-10

©
L
o

9-17
9-17
9-18
9-19
9-19

10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-2
10-3

A

A

P

B.

mmo

PENDICES

JEDEC Standard Number 3

QIC-02 and SCSI Interface Signals and Timing Diagrams
QIC-02 Interface

SCSI Interface

Software Support

C.1 Assembler

C.2 Simulator

References

Glossary

Am29CPL100 Data Sheets

MTMOOOOWmW >
B L

CHAPTER 1

FIELD PROGRAMMABLE CONTROLLER OVERVIEW

1.1 DESIGN CHOICES

Sequential state machine design is normally ap-
proached using one of two general methods: the
traditional random logic and flip-flop approach, or
microprogramming. Until recently, traditional meth-
ods were used for state machines with relatively few
states, e.g. dynamic memory controllers, while
microprogramming was used for applications with
many states, e.g. CPUs. The area in between was
handled with a hodge-podge of techniques ranging
from ad-hoc use of counters and shift registers to
PROM-based sequencers. Now, Advanced Micro
Devices has introduced the Am29CPL100 Field Pro-
grammable Controller (FPC) family to allow cost-
effective application of microprogramming tech-
niques to fairly small state machines.

Traditional design methodology generally uses state
diagrams to define machine behavior, followed by
derivation of appropriate J-K flip-flop excitation
equations. This approach typically results in very
high-speed state machine implementations which
are highly optimized for a particular task. Unfortu-
nately, this technique is at best tedious and can be
essentially unusable for large state machines.

The microprogramming approach to state machine
design consists of storing machine cycle control
sequences in memory locations. These instruc-
tions are fetched and executed sequentially. Micro-
programming is similar to assembly language pro-
gramming of other processors with subroutines,
loops, and structured programming constructs.

1.2 Am29CPL100 ARCHITECTURE
OVERVIEW

The Advanced Micro Devices Am29CPL100 is a
family of compatible single-chip Field Programmable
Controller (FPC) devices. It combines, in one chip,
address sequencer logic, program memory, and a
powerful instruction set that supports a repertoire of
jumps, multiple branches, and subroutine calls.
These instructions can be executed conditionally
depending on external condition tests. A Serial
Shadow Register (SSR) helps designers diagnose
system troubles at the individual IC component level.
A pipeline register permits fetching the next instruc-

tion at the same time that the current instruction is
being executed. This Chapter provides a general
description of the FPC. For a detailed description,
refer to the data sheets in Appendix E.

The first member of the Am29PL100 Family, the
Am29PL141, was the first device to combine the
elements of an intelligent microcode controller in a
single device. From this base, the second genera-
tion in the family, the Am29PL142, added more
program memory, registered inputs, and a stack.
The next generation in the Am29PL100 family, such
as the Am29PL142 and Am29CPL144, incorpo-
rates low-power, high-performance (25-30 MHz) and
CMOS technologies with devices that are 100%
compatible with their bipolar equivalents. Further
still, new CMOS Am29PL100 devices, like the
Am29CPL144, incorporate larger program memory
and more features.

The Am29CPL100 architecture consists of four major
blocks:

 Address sequencer control logic

* Branch control/condition code select logic

* Instruction decode logic

« Program memory with a pipeline register and SSR

1.2.1 Address Sequencer

As shown in Figure 1-1, FPC control sequences,
stored in the on-chip programmable memory, are
fetched under control of the address sequencer and
clocked into the pipeline register. Figure 1-2 shows
a detailed block diagram of one device in the
AmM29PL100 family: the Am29PL142.

In the Am29PL142, the address sequencer inputs
consist of eight external inputs and a portion of the
currently held contents in the pipeline register. These
bits are wrapped around internally in the chip. (The
remaining bits go off chip to control other compo-
nents in the system.) The test field in the general
instruction format tells the sequencer which input to
test. The result of this test determines whether the
sequencer will process the next instruction in pro-
gram memory or fetch an instruction from an ad-
dress specified in the data field from the stack or
from an external address specified by the test
inputs.

1-1

CONDITION Within the address sequencer control logic, a four-

TESTS to-one program counter multiplexer supplies the
next state address (refer to Figure 1-2). This next
state address can be one of the following:

REGISTER
{} } « Current address, PC (for repeat or hold instruc-
tions)

« The next sequential address from program mem-
ADDRESS SEQUENCER ory, PC+1 (for sequential and continue instruc-

tions)

The stack (for nesting and repeat loops)

Output of the GO-TO branch control logic
PROGRAM MEMORY The Program Counter contains the address of the
current state, PC (the current instruction being exe-

cuted). Allowing the address multiplexer to select

SERIAL SHADOW REGISTER
(ot -7 the current state as the next state enables execu-

RESET

IN—>4 —>out tion of loops and wait-until-condition-true type in-

A structions. The FPC can thus simply wait until a

oK L———— PIPELINE REGISTER particular event becomes true. This function of
intelligent state machines is needed to interface

{} | I with various microprocessors and peripherals. The

Figure 1-1. Am29CPL100 Block Diagram

incremented Program Counter address, PC+1, is
the normal next address when no jumps, branches,
or subroutine calls are active.

OUTPUTS

ADDRESS CONTROL LOGIC

PC
} REGISTER

CC —

I — i
CONDITION
D CODE J |> EQ | ZERO push pop

BRANCH
} TEST CONTROL
LOGIC

b 2-DEEP .
1L 7L l 'STACK 7-BIT ADDDRESS
PROGRAM MEMORY
I 128 x 34

I TEST MUX
SOCARTY JJ« . 33 16]15]14 s|7 0
v ‘ MUX I DCLK MODE
L —» .
5, INSTRUCTION 7> ‘ Sol— AR Y SN A0
7 DECODE |, ; /1
. CONTROL PIPELINE REGISTER .
I 33 16[15|14 e]7 0
np l
17, OE
7
YUY Y

08950423

Figure 1-2. Am29PL142 Detailed Block Diagram

1-2

The address sequencer logic also incorporates a
stack. This output from the stack either loads the
counter register multiplexer (discussed below) or
program counter multiplexer. The input to the stack
is selected by a three-to-one multiplexer, which
selects either PC+1 (the return address from sub-
routine calls), the current top of stack (TOS) con-
tents (for looping on TOS), or the counter register
contents (for intermediate storing of counter
values).

The counter block is used for timing. It has a
counter register (CREG) and a four-to-one multi-
plexer as the source for the CREG. To perform
iterative loops, the controller first loads CREG with
the value of the number of iterations required. Ev-
ery iteration of the loop decrements the count. When
the count reaches zero, iterations stop. The zero
condition is detected by the zero detect logic on the
chip.

The RESET input initializes the FPC, setting the
program counter multiplexer to all ones. An addi-
tional operating mode allows use of serial shadow
register (SSR) diagnostic techniques.

1.2.2 Branch Control/Condition Code
Select

The branch control logic provides the address for
multiple branching and for conditional statements
such as IF-THEN-ELSE. The condition code select
logic selects the condition to be tested, which the
user can specify for each microprogram instruction.
This allows monitoring of both external and internal
events. The user-defined microcode can set the
polarity control to test on either true or false
conditions without the need for external hardware
inverters.

The branch control logic implements program jumps
using either the data field from the instruction for-
mat or the external inputs. Individual inputs can be
masked (i.e. set to zero) so that only the desired
input can affect the address sequencer's operation.
Use of external inputs by the branch control logic
supports multiway branching. These external in-
puts can also be used to preload the counter
register.

A flexible instruction set provides powerful condi-
tional branch, multibranching, subroutine, and loop
structures. These instructions, explained in the
data sheets, fall into six categories:

Program Branch Instructions (e.g. GOTOPL,
GOTOTM, FORK)

Subroutine Branch Instructions (e.g. CALPL,
CALTM, RET)

Stack Instructions (e.g. PSH, PSHPL, POP)
Looping Instructions (e.g. LPPL, LPTM, LPSTK)
Load Counter Instructions (e.g. LDPL, LDTM)
Miscellaneous Instructions (e.g. DEC, DECPL,
DECTM)

1.2.3 Instruction Decode Logic

The instruction decoder decodes the microin-
struction, including the opcode field, the polarity bit,
the test field, and the data field. The test field
specifies the condition code input that will be tested
to determine if a branch is to be taken. For condi-
tional branches, if the condition is true (or false if the
polarity is set to 1), a branch is taken to the branch
address specified in the data field or externally by
the testinputs. The output enable bit in the microc-
ode enables the outputs of the FPC.

1.2.4 Program Memory and Pipeline
Register

Conceptually, each memory location can be thought
of as defining a particular state of the state ma-
chine, with each address corresponding to the
number of this state. The external test inputs and
internal test, the EQ condition (used to determine if
the external inputs have a value equal to the con-
stant field in the microcode), are included to allow
conditional state transitions. Typical microcode
consists of testing one of the test inputs and branch-
ing if the condition tested is true.

The program memory stores the program of micro-
instructions specifying state transitions. Each mi-
croinstruction specifies the state of each of the
outputs used to control peripherals and other de-
vices. The remaining fields in the microinstruction
have been described above. The program memory
is programmed using commercially available logic
programmers.

The pipeline register associated with the memory
contains the microinstruction currently being exe-
cuted. It allows concurrent execution of the current
microinstruction and fetching of the next instruction.
Its upper bits form the state sequencing and internal
control logic. The low order 16 bits are used as
general purpose, user definable control outputs. Of
these user controlled bits, the upper eight bits can

be three-stated by output enable bit (OE) in the
microinstruction. If more than 16 output control bits
are needed, Am239PL100 devices can be cascaded
quite simply.

The FPC operates in two modes: normal and diag-
nostic. In the normal mode, a microinstruction is
executed for every clock cycle. When the FPC is
programmed to use the diagnostics feature, the
Serial Shadow Register (SSR) is activated. This
provides a simple, straightforward method of in-
system testing to isolate problems to the individual
IC level.

SSR diagnostics simplify device and system-level
diagnostics. To test a chip, an instruction is shifted
serially into the SSR and then loaded in parallel into
the pipeline. As a result, the instruction is executed
and its results are transferred back from the pipe-
line into the SSR. From there, it may be shifted out
for diagnosis.

1.3 INSTRUCTION FORMAT

This section discusses the microinstruction format
using the Am29PL142 as an example. For more
detailed information on other Am29CPL100 devices,
refer to the appropriate data sheets.

Each microinstruction is partitioned into fields. There
are two microinstruction formats: the general micro-
instruction format and the compare microinstruction
format. The low order 16 bits in each format contain
16 user-controlled output signals that appear on
FPC outputs P[15:0].

In general microinstruction format, the upper 18 bits
are assigned as follows:

Bits Description
16-22 Data (a conditional branch address, test
input mask, or counter value)

23-26 Test (specifies which one of eight input sig-
nals to use for the condition code)

27 Polarity (specifies whether to test input for
true or false)

28-32 Opcode (identifies microinstruction to exe-
cute)

33 Output Enable (when set to 0, it 3-states

output lines P[15:8])

In the compare microinstruction format, the upper
16 bits are assigned as follows:

Bits Description

16-22 Data (a 6-bit mask for masking the T[5:0}
inputs)

23-29 Constant (specifies a 6-bit constant for
comparison with T*M for the condition code)

30-32 Opcode (identifies microinstruction to exe-
cute)

32 Output Enable (when set to 0, it 3-states

output lines P[15:8])

1.4 Am29CPL100 SOFTWARE
SUPPORT

Designing complex state machines and intelligent
controllers requires good software support. The
Am29CPL100 family is supported by assemblers
and simulators. The assembler generates a JEDEC
fuse map from source code programs written using
the high-level Am29CPL100 instruction set. This
JEDEC fuse map is used by commercially available
logic programmers to program Am29CPL100 de-
vices. The simulator is used to perform logic simu-
lation of Am29CPL100 programs.

1.4.1 PL14X Assembler

The PL14X Assembler converts design specifica-
tions written in a symbolic language into a JEDEC
fuse map which can be used by other modules such
as the simulator and commercially available logic
programmers.

The assembler allows data to be defined as bytes or
words, permits forward label references, and allows
assignment of values to bits in binary, octal, deci-
mal, and hexadecimal format.

High level language constructs, such as IF-THEN-
ELSE and WHILE, are directly supported by the
assembler providing program structure and clear
documentation for the designer.

The assembler is described in detail in the PL14X
assembler documentation.

a3 32 28 27 26 23 22 16 15 0

USER-DEFINED
OE OPCODE POL TEST DATA OUTPUTS-
16 BITS
WHERE:
OE = SYNCHRONOUS QUTPUT ENABLE FOR P[15:8).
OPCODE = A 5-BIT OPCODE FIELD FOR SELECTING ONE OF THE 27 SINGLE DATA-FIELD INSTRUCTIONS.
POL = A 1-BIT TEST CONDITION POLARITY SELECT.
0= TEST FOR TRUE (HIGH) CONDITION.
1 = TEST FOR FALSE (LOW) CONDITION.
TEST =A4-BIT TEST CONDITION SELECT
TEST [3:0] CONDITION INPUT
UNDER TEST
0000 [0}
0001 T
0010 T[2]
0011 (3]
0100 T(4]
0101 105
0110 6
o111 cc
1000 EQ
1001 CREG ZERO
1010-1111 UNCOND [0]
THE POLARITY BIT POL IN AN INSTRUCTION ALLOWS THE USER TO TEST FOR A PASS/TRUE OR
FAIL/FALSE CONDITION AS SHOWN IN TABLE 2. AN UNCONDITIONAL TRUE IS SET BY SELECTING
UNCOND AND POL = 1.
DATA =A 7-BIT CONDITIONAL BRANCH ADDRESS, TEST INPUT MASK, OR COUNTER VALUE FIELD

DESIGNATED AS PL IN INSTRUCTION MNEMNONICS.

Figure 1-3. Am29PL142 General Instruction Format

The special two data field comparison instruction is shown below:

33 32 30 29 23 22 16 15 0
USER-DEFINED
OE OPCODE CONSTANT DATA OUTPUTS-
16 BITS
WHERE:
OE = SYNCHRONOUS OUTPUT ENABLE FOR P[15:8].
OPCODE = COMPARE INSTRUCTION (BINARY 100).

CONSTANT = A 7-BIT CONSTANT FOR EQUAL COMPARISON WITH T*M.

DATA

= A 7-BIT MASK FIELD FOR MASKING THE INCOMING T([6:0] INPUTS.

Figure 1-4. Am29PL142 Comparison Instruction Format

1.4.2 PL14X Simulator

Device simulation is based on a test vector file,
generated from the test vectors specified by the
designer. The PL14X simulator uses the JEDEC
fuse map file (generated by the PL14X assembler)
and the test vector file as its inputs. The simulator
generates computed output signals that are com-
pared with expected output values as specified in
the test vector file. A printout of the output shows
the difference if any.

The simulator also provides an interactive mode
allowing the designer to interactively preload or
change any or all of the internal registers of simu-
lated Am29CPL100 devices. Single-step and break-
points provide further control. For details, refer to
the PL14X Simulator documentation.

1.5 AN OVERVIEW OF THIS
TECHNICAL HANDBOOK

Chapter 2 is an Am29PL100 tutorial.

Chapter 3 presents reprints of articles written about
the Am29PL141. The first article is an overview
discussion of the Am29PL141, its architecture and
applications. The second article discusses a VME
bus controller designed using the Am29PL141.

Chapter 4 provides a simple example of an
Am29PL141 application. It is a coffee machine
controller. This example shows not only the hard-
ware but also the microprogram required.

Chapter 5 describes the realistic use of an
Am29PL141 as an interface for the DEC PDP-11
Unibus. The complexity of Unibus handshaking is
such that microprogramming is a reasonable de-
sign technique, but .use of a separate sequencer,
control memory, and pipeline register is not eco-
nomical. Since the FPC contains a sequencer,

DATI/DATO with device as slave
Device interrupt request (single level)
Device direct memory access request
DATI/DATO with device as master

The control logic is implemented using the
Am29PL141 FPC. Its microprogram implements a

“state machine to control both device and Q-Bus

memory, and pipeline, an interface for the DEC |

PDP-11 Unibus can be readily designed using the
Am29PL141 FPC. Itfits this class of problem rather
well. The PDP-11 was chosen for this example
because it has a well documented protocol which is
familiar to many engineers.

Chapter 6 describes the use of an Am29PL141 as a
controller for the DEC Q-Bus. The problem ad-
dressed is to design an interface between the Q-
Bus and a generic device to allow the following
operations:

handshaking.

Chapter 7 describes the use of the Am29PL141 as
a dual port memory arbitrator in a Starlan system.
The Am29PL141 controls the DMA transfers to and
from the relatively slow speed communication lines
freeing the CPU to perform other tasks.

Chapter 8 describes the use of an IBM/PC to run di-
agnostic tests on a device containing a Serial
Shadow Register (SSR). The Am29PL141 controls
the flow of data to and from the SSR.

Chapter 9 describes an Am29PL141-QIC-02 and
SCSlinterface. This interface links tape drives with
a CPU. It permits the backup of large hard disk
drives on quarter-inch magnetic tape.

Chapter 10 describes a high speed DMA controller
using the Am29PL141.

The appendixes include the JEDEC Standard
Number 3; the QIC-02 and SCSI timing diagrams;
References; Glossary; Am29PL100 data sheets;
and an index.

1-6

CHAPTER 2

AM29PL100 TUTORIAL

Written by Art Goldstein

The purpose of this tutorial is to present background
information on the Am29PL100 family of parts to
enable designers to use these devices in their de-
signs.

The Am29PL100 are high-speed logic devices that
are programmable by instructions rather than Boo-
lean equations. From this point of view, the
Am29PL100 family represents a new trend and will,
over time, enjoy wide acceptance because of the
simplicity of its approach.

Historically, the Am29PL100 family evolved out of bit-
slice designtechnology. Atthe heart of these designs
is the concept of microprogramming that was first
proposed in the early 1950s by M.V. Wilkes as a
technique for simplifying the design of a computer-
control unit.

Nominally, the design of the control unit seems to
have little to do with the bulk of sequential logic
design. In fact, however, the control unit can be
regarded as a general modelforabroad range of logic
design problems. Because of this, microprogram-
ming represents, in essence, a logic design tech-
nique that offers many advantages over designs
based strictly on Boolean equations and state
diagrams.

Microprogramming differs very little from normal
assembly-language programming. Both have similar
features in terms of instruction set format and pro-
gram structures. The difference is that micropro-
gramming supports the design of hardware while an
assembly language program is more often associ-
ated with the manipulation of abstract data.

In this age of the microprocessor, it is well to keep in
mind that the Intel 4004, generally considered the first
commercially available microprocessor, was used
more as a replacement for random logic than as a
general-purpose processor. Indeed, the same can
be said of 8-bit processors. It has been only with the
advent of the 16- and 32-bit processors that the
microprocessor has flowered into a general-purpose
computing device used to supplant minicomputer and
even mainframe machines.

Because of this history, the concept that software
techniques canbe usedto implementhardware should
come as no surprise. Microprogramming, because of

its association with bit-slice design, might seem
mysterious to the uninitiated, but it is indeed both
simple and straightforward, as this tutorial will show.

This tutorial consists of two sections. Section 2.1 is
devoted to microprogramming and presents an
overview of the subject as it relates specifically to the
Am29PL100 family. In addition, Section 2.1 includes
the design of a computer control unit that not only
sheds light on how microprogramming works but also
serves as the foundation for the design of the
Am29PL100 family itself.

Section2.2 presentsfive Am29PL100-baseddesigns.
Within the course of this section, the Am29PL100
microinstructions are explained andusedto implement
a wide spectrum of hardware structures.

2.1 INTRODUCTION TO
MICROPROGRAMMING

This section introduces the major ideas of micropro-
gramming by working through the design of a micro-
programmed control unit for a very simple computer
system. In this way, we not only obtain an under-
standing of microprogramming, but also learn about
the structure of the Am29PL100 field programmable
controller and why it came about. Later family
members, such as the Am29CPL142 and
Am29CPL144 are very close architecturally to the
Am29PL141, and the concepts discussed will apply
to the family in general.

The reason for focusing on the design of a computer
control unit is twofold. First, microprogramming
evolved specifically as a means of simplifying the
design of this part of the computer. Second, the
control unit serves as a useful model for many com-
plex digital networks.

The point to bear in mind is that microprogramming is
a general logic design technique and is a useful
alternative to Boolean equations and state diagrams
in many circumstances. As its name implies, micro-
programming involves software techniques. While
some knowledge of machine language programming
is useful, we do not assume any particular back-
ground, butinstead develop the pertinent techniques
as the need arises.

2.1.1 Simple Computer System

Figure 2-1 shows a block diagram of a simple compu-
ter system capable of processing the 16 instructions
listed in Figure 2-2. The computer system consists of
these major components:

Dual-ported register file (RF) — The register file
contains eight 16-bit registers. The contents of any
two registers are simultaneously available at the YA
and YB output ports by supplying the appropriate
addresses to Port-A and Port-B address lines and
holding the WRRF line high. Data is written into a
register by specifying the register address on the Port
A address lines and pulsing the WRRF line low.

Arithmetic logic unit (ALU) — The ALU performs
the eight operations listed in Table 2-1. Each opera-
tion requires two 16-bit operands with the result
appearing on a 16-bit output port. For arithmetic
operations, three status lines indicate whether an
overflow occurred or a result was greater than or
equal to zero.

Memory subsystem — The memory subsystem
consists of a 4K-word by 16-bit memory array, a
memory address register (MAR), an input data regis-
ter (IDR) and an output data register (ODR). The
address in the MAR comes either from the program
counter (see the description of register R7 below for
further details) or from an address specified in an
instruction. The signal READ determines whether
data is written to or read from the memory.

Control unit (CU) — The control unit activates a
sequence of control signals to implement the instruc-
tions fetched from memory. (See Section 2.3 for a
detailed description of each control signal.)

As shown in Figure 2-2, nearly half the instructions
operate upon the contents of registers in the register
file. These eight registers, designated RO through
R7, are referenced by the 3-bit source or destination
field contained within the instructions. (See Section
2.4 for a detailed description of each instruction.)

Three of the registers have special meanings that the
programmer must take into consideration:

R7 — This register is the program counter. It is
incremented during the execution phase of every
instruction and is used as the source for the MAR
unless the instruction causes a transfer of control.

R6 — This register is the stack pointer. The CALL
SUBROUTINE instruction uses this register to store
the return address on the stack. The RETURN
instruction uses this register to restore the program
counter with the return address.

RO — This register is implied as the source and
destination register inthe STORE and LOAD instruc-
tions, respectively. The BRANCHN and BRANCHZ
instructionstest this register to determine ifthe branch
is taken.

2.1.2 Design of Control Unit

The control unit directs the activity of the elements of
this system. It responds to instructions fetched from
memory and activates a sequence of control signals
to implement the instructions. To show how this
works, let's examine the sequence of events that
takes place in fetching, decoding and executing the
ADD instruction shown in Figure 2-2.

In our example, we want to add the contents of

OPERATION ALU CODE FUNCTION PERFORMED*

SuB 000 A-B

ADD 001 A+B

INC 010 A+ 1

DEC 011 A-1

AND 100 A+B

OR 101 A+B

SHFTL 110 SHIFT A LEFT ONE POSITION
SHFTR 111 SHIFT A RIGHT ONE POSITION

* A REFERS TO OPERAND ON INPUT PORT A
B REFERS TO OPERAND ON INPUT PORT B

RESULT OF OPERATION APPEARS ON QUTPUT PORT.

Table 2-1. ALU Operations

AHOW3IW

YW

waalsAg 1eindwo) sjdwis *1-g ainbiq

3a0oN1v
dHHM

Haay v1dod
Haav4yi3s
v.iva4yi3as

HYWA1
HYWI3S

It

XNWHYN
———~@ qav3d

kjo HAON3

<——e HA0a1

av3ay
HYW13S
dvINaT
HAoN3
daoan
dai1an

1INN TOHINOD

———Llvisniy

XN
V1dOd

nv
¥ 1NdNI

ddial o

1Nnd1no

g8 1NdNI
SNLVIS

XN

S

lvisniv |_

—eo

374934 | XNW 31714934

gar L|

o
>

3aoonv
Hayv v.1dod

d4aav4yi3as

444M

v1vadyi3s

2-3

SHIFTL*
SHIFTR*
ADD

suB

AND

OR

JMP

CALL SUBROUTINE
RETURN
BRNCH 1**
BRNCH 2""
LOAD*
STORE*
INC

DEC

MOV

OPCODE*

| 0 | count

| 1 | CouNT

R

| 3] R0 | Rs

| 4 | rRo | RS

| 5 | rRD | Rs

L 6 | ADDRESS |
7	ADDRESS 7
8	ADDRESS
9	ADDRESS
[A	ADDRESS
[B	ADDRESS
[C [ADDRESS	
D	RD

| E | mD

{ F | RD

RD: SPECIFIES DESTINATION REGISTER
RS: SPECIFIES SOURCE REGISTER

* REGISTER RO IMPLIED AS DESTINATION OR SOURCE
** REGISTER RO IMPLIED AS REGISTER TESTED
t OPCODE GIVEN IN HEX

Figure 2-2. Instruction Set and Format

2-4

register R2 with that of register R3 and replace
register R2 with the result. Here are the steps that
take place:

Fetch instruction.

Load MAR with address of instruction.

Issue READ signal to external memory bus.
Latch data from memory bus into IDR.

Decode instruction.
Extract OPCODE field from IDR.

Determine operation to be performed by exam-
ining OPCODE.

Execute instruction.
Issue code for ADD to ALU.
Wait for operation to take place.

Issue WRRF pulse to register file to write result
back to register R2.

Increment program counter R7.

Go back to the first step to continue processing
program.

Figure 2-3 illustrates the timing diagram that reflects
this activity. Using thistiming diagram, we candesign
a logic network to implement the sequence of steps
enumerated above. Of course, this network supports
only the ADD instruction. Creating a logic network
supporting all 16 instructions is considerably more
complex. Furthermore, adding an additional instruc-
tion or modifying an existing one can be a fairly
complicated procedure entailing a redesign of the
entire network, not just a small portion of it.

2.1.3 Microprogramming Approach

Confronted with this state of affairs, M.V. Wilkes
suggested an alternative approach whose purpose
was to design “the control circuits of a machine which
is wholly logical and which enables alterations or
additions to the order code to be made without ad hoc
alterations to the circuits.” (Note that the term “order
code” was an earlier way of referring to OPCODE.)

The essence of Wilkes' idea is that the output of a
sequential logic network can be regarded as a series
of binary words. The individual bits of these words
serve as control signals that are used to direct the
operation of the computer. Viewing the words in this
way, we can just as well store them in a read-only
memory (ROM) and read out the contents of the
ROM, clock by clock, to obtain the desired output
pattern. Because the output patterns of the sequen-
tial logic network and the ROM-based approach are
identical, these two approaches can be regarded as
interchangeable.

To illustrate these ideas, we will work through the
stepstocreate the sequence of control signals needed
to implement the ADD instruction described above.
The circuit of Figure 2-4 is used for this purpose. As
shown, the ROM is partitioned into two parts. Fifteen
of the output bits are used as our control signals, while
the remaining four bits are fed back to the address
register. These bits, together with the OPCODE, are
used to address the ROM.

The timing diagram of Figure 2-3 has beenredrawnin
Figure 2-5 to show how to derive the data we want to
place in the ROM. As shown, we treat the timing
information like a series of binary numbersthatchange
onaclock-to-clock basis. The top line corresponds to
the lowest-order bit with subsequent lines spanning
the higher order bits. Working in this way, we con-
struct the data in Table 2-2. Here, the first line
contains the equivalent binary number correspond-
ing to clock period 1 followed by the numbers cor-
responding to subsequent clock periods. Notice that
clock period 1 is the first clock period after the ADD
instruction has been clocked into the IDR.

Table 2-3 lists the part of the ROM contents that we
are using in our example. The low-order hex digit
contains the NEXT ADDRESS that is used to se-
quence through the ROM addresses, and the remain-
ing four digits contain our desired control information.
Notice that the ROM contents are at addresses 20
through 28 hex. We derive this ROM address range
by combining the low-order four bits from the ROM—
the NEXT ADDRESS—withthe OPCODE field. From
Figure 2-1, we see that the OPCODE for the ADD
instruction is 2.

Now let’s follow the activity starting from the point
when the ADD instruction is fetched and residing in
the IDR. As the address register is clocked, the
contents of the ROM starting from location 20 is
clocked out, followed by the contents of locations 21
through 28. If we trace the activity of the control bits
during this time, we wind up with the timing diagram
of Figure 2-4, which is the desired result.

Each word in the ROM (the “control” ROM) is called
a microinstruction, and a sequence of microinstruc-
tions is called a microprogram.

The architecture we arrived at employing micropro-
grams has a hierarchy of programs. The programs
that reside in the system memory are normally called
“macro” programs (or assembly levelprograms). The
program that directly controls the hardware and is
stored in the control store and is invisible to the
general user is the microprogram. Macroprograms
are said to be made up of macroinstructions. Each
macroinstruction, as we have seen, has an OPCODE
field and data fields.

CLOCK PERIOD VALUE (HEX)
0865
1864
1064
1F64
2FE4
27E4
2FEC
0864
0864

© O N U AW =

Table 2-2. Binary Equivalent of Timing Diagram for Add Instruction

ROMADDRESS =~ ROMDATA
20 08651
21 18642
22 10643
23 1F644
24 2FE45
25 27E46
26 2FEC7
27 08648
28 ' 08640

Table 2-3. ROM Values Corresponding to Add Instructions

2-6

ADD INSTRUCTION
CLK]]] |] 1 1 1]]] 1 |] 1]

SELMAR

LDMAR

READ

LD IDR*

moQooO Ccr>»

/

WRRF

SELRFDATA

SELRFADDR

PORT A
ADDRESS

/

LDODR

ENODR

*NOTE TWO CLOCK PERIODS ARE ALLOWED FOR READING MEMORY

Figure 2-3. Timing Diagram for Fetching, Decoding and Executing Add Instruction

4 NEXT ADDRESS

OPCODE
(FROM IDR)

N

/

15

CONTROL SIGNALS

ADDRESS REGISTER ROM

Figure 2-4. ROM-Based Control Unit

For each macroinstruction, there is a sequence of
microinstructions that need to be executed to
implement it. Each of these small sequences is
normally called a microroutine, and the combination
of all these microroutines is normally called the
microprogram. Microroutines are sometimesreferred
to as microprograms.

Because our computer system has 16 macroinstruc-
tions or operations (see Figure 2-2), we have, cor-
respondingly, 16 microroutines, each of whichis used
to decode and execute the corresponding macroin-
struction and fetch the following macroinstructior.
Assuming the NEXT ADDRESS (micro) field is ini-
tially zero, we use the (macro) OPCODE to pointto the
starting address of the appropriate microroutine (see
Figure 2-6).

A microinstruction consists of two parts. The first part
contains information about the sequencing of micro-
instructions (NEXT ADDRESS field), and the second
part consists of a set of control signals that carry out
several activities in parallel (see Figure 2-7).

Within one macroinstruction, we may use some of the
control bits to specify an ALU operation, another to
specify a READ and still another to perform some
other activity. In a sense, each one of these output
fields represents a MICROOPCODE because it spe-
cifies an action to take place. In this way, a microin-
struction may consist of several MICROOPCODEs
that are acted upon in parallel.

A major difference between macro- and microinstruc-
tions is that a macroinstruction consists of one OP-
CODE, while a microinstruction consists of several
MICROOPCODEs.

2.1.4 Microsubroutines

Given the 16 instructions that our simple computer
system can process, we use 16 corresponding micro-
programs. Each microprogram contains microinstruc-
tions for fetching the next instruction. Because of the
16 microprograms, these microinstructions are re-
peated 16 times. Clearly, this is wasteful, especially
in the case of a more complex computer that has tens
of instructions. A more efficient way to have the active
microprogram jump to a separate microprogram that
carries out the steps for fetching the next instruction
and then return to the point where it left off. This
procedure is called a microsubroutine and is similar to
the subroutine of a program. However, our simple
address register-ROM combination is not adequate
for this task. To accomplish the above task, we need
these new facilities:

Microsubroutine register for storing the next
microinstruction to be executed uponreturnfrom
the microsubroutine.

Mechanism for loading the address register with
the contents of the microsubroutine register so
that the initiating microprogram can proceed.
Figure 2-8 shows a circuit that allows the execu-
tion of microsubroutines as well as sequential
microinstructions. The address multiplexer fun-
nels three address sources to the address regis-
ter.

NEXT ADDRESS field. The NEXT ADDRESS
field has been widenedto allow the microsubrou-
tine to be located anywhere in the ROM.

Microsubroutine register. This register holds the
address of the next sequential instruction to be
executed upon return from a microsubroutine.

CLK PERIOD 1 2 3 4 5 & 7 8 9 10 11 12 13 14 15 16
CLK | 1 1 1] | |] 1 1]] I] L1

LDIDR [‘ [

LDODR

ENODR

LDMAR I I

SELMAR

READ

SELRFDATA

SELRFADDR | |

ALUCODE ' |

Figure 2-5. Timing Diagram for Obtaining ROM Values

2-9

ROM ADDRESS

(OPCODE =0) 00

MICROPROGRAM
FOR SHFTL
INSTRUCTION

(OPCODE =1) 10
MICROPROGRAM

FOR SHFTR
INSTRUCTION
(OPCODE=2) 20
MICROPROGRAM
FOR ADD

INSTRUCTION
~ ~
~y ~

(OPCODE = E) EO

MICROPROGRAM *
FOR DEC
INSTRUCTION

(OPCODE = F) FO

MICROPROGRAM
FOR MOV
INSTRUCTION

Figure 2-6a. Address Space Map for ROM

ROM ADDRESS = X Y

L SUPPLIED BY NEXT ADDRESS FIELD

SUPPLIED BY OPCODE

Figure 2-6b. Composition of ROM Address

2-10

|
/
N —
L next aoor

LDIDR

LDODR

ENODR

LDMAR

SELMAR

READ

SELRFDATA

SELRFADDR

PORTAADDR

WRRF

ALUCODE

Figure 2-7a. Microword Functions

18 1615 10 9 765 43 0

I [1 11 I

L NEXT ADDRESS FIELD
INPUT DATA REGISTER CONTROL

OUTPUT DATA REGISTER CONTROL

MEM. ADDRESS REGISTER CONTROL

REGISTER FILE CONTROL

ALU CONTROL

Figure 2-7b. Microword Format

2-11

MICROSUBROUTINE
REGISTER

INCREMENTER

H
U

T
N ||
Y
8 | m 8
N N N CONTROL
A} A} AN SIGNALS
X
8
OPCODE ————\—
SEL A
ADDRESS ADDRESS ROM
MUX 2 REGISTER

Figure 2-8. Circuit for Accommodating Microsubroutine

The microsubroutine register receives the output
of the address register incremented by one.
This allows usto proceedwith the next sequential
microinstructionupon completion of a subroutine.

» OPCODE field. This source is similarin function
to the circuit described previously in Figure 2-4.
It differs in that the low-order four bits are forced
to zero, while the upperfour bits are derived from
the OPCODE field as before.

The key to the operation of this new circuitry is the
ability to control the selection inputs of the multiplexer
(mux). We accomplish this control by adding an
entirely new field to the microinstruction as shown in
Figure 2-9. In operation, this mux control field starts
to take on some of the behavior of an OPCODE in a
program, as shown in Figure 2-10 where we give

symbolic names to the binary codes comprising the
mux select lines.

Figure 2-11 shows how to use the microsubroutine
facility to call a microsubroutine from any micropro-
gram. As shown, each calling microprogram exe-
cutes a JMP FETCH microinstruction. As aresultthe
microsubroutine register receives the content of the
address register incremented by one and control is
passed to the address specified symbolically as
FETCH (the beginning of the microsubroutine).
Execution of the microsubroutine now proceeds until
the last microinstruction, an RTS, is executed. This
enables the calling microprogram to resume execu-
tion at the address following the JMP FETCH instruc-
tion by transferring the contents of the microsubrou-
tine register back to the address register.

2-12

2.1.5 Solving Two Fundamental
Problems

A careful examination of Figure 2-8 reveals two
fundamental problems:

« Glitches on control signals. Afteranew address
is sent to the ROM, glitches may occur on the
control signals during the access time of the
ROM.

« Delay of one clock period on OPCODE input.
Because the OPCODE field is extracted from
the IDR, adelay of one clock period is introduced
until the OPCODE is clocked into the address
register.

The circuit of Figure 2-12 corrects these problems by
adding a register at the output of the ROM—called a
pipeline register—and addressing the ROM with the
output of the mux rather than the address register.
Notice that this arrangement still preserves the func-
tionality of the circuit in Figure 2-8.

2.1.6 Microprogram Counter

If we connect the output of the address incrementer to
another input of the mux, an unexpected benefit
results. With this arrangement, we can execute
sequential microinstructions without explicitly defin-
ing the next address in the NEXT ADDRESS field of
the microinstruction. The combination of address
register and incrementer gives us a microprogram
counter that behaves in the same manner as a
program counter for a program. In addition to the
microprogram counter, however, we still need the
NEXT ADDRESS field to allow us to transfer control
to any location within the ROM (see Figure 2-13).

2.1.7 Implementing the Branch
Instructions

So far we have created a powerful structure for
executing microinstructions. We can execute se-
quential microinstructions, call microsubroutines and
jump to any arbitrary location in ROM. However, we
cannot implement the macro BRANCH instructions
because we lack the ability to alter the sequence of
microinstruction execution and thus the sequence of
macroinstruction execution, in response to the state
of the ALU status lines.

For example, when the macro BRANCHZ instruction
executes, transfer of control passes to the instruction
located at the address specified in the ADDRESS
field when the content of register RO is zero. Other-
wise, macroprogram execution continues with the
next sequential macroinstruction. Our control unit
must therefore be able to load the MAR with the
content of either the macroprogram counter or the
IDR, depending upon the state of the ZERO ALU
status line. This means incorporating a conditional
branch facility into our control unit. Because micro-
code instructions execute the conditional macrocode
instructions, the microcode instructions themselves
need conditional operation capability.

Let’s take a look at Figure 2-14, which is the circuit of
Figure 2-13withanaddedblock, EXECUTIONLOGIC.
The inputs to this block are the mux select lines from
the pipeline register, an external condition and a new
bit from the pipeline register. This bit, which we will
call a conditional JUMP select line, allows us to alter
the sequence of microinstruction execution depend-
ing upon the state of the external condition input.
Notice also that we have relabeled the NEXT AD-

I— NEXT ADDRESS

CONTROL SIGNALS

MUX SELECT

Figure 2-9. Microinstruction Format with MUX Select Lines Added

2-13

MUX SELECT SYMBOLIC REFERENCE

ACTION

00 JMPOP TRANSFER CONTROL TO ADDRESS
POINTED TO BY OPCODE

01 JMP PROCEED WITH MICROINSTRUCTION
POINTED TO IN NEXT ADDRESS FIELD

10 RTS RETURN FROM MICROSUBROUTINE BY

PROCEEDING WITH ADDRESS POINTED
TO BY MICROSUBROUTINE REGISTER

Figure 2-10. Symbolic Interpretation of MUX Select Lines

MICROSUBROUTINE JMP FETCH
REGISTER ——»

MICROSUBROUTINE JMP FETCH
REGISTER 5,

Figure 2-11. Calling A Microsubroutine

FETCH

RTS

2-14

MICROSUBROUTINE ADDRESS

REGISTER INCREMENTER REGISTER
+1
ADDRESS
MUX ROM
M
u
X
OPCODE SEL
PIPELINE
2 REGISTER
/
7

Figure 2-12. Circulit to Correct Glitches on Control Signals

CONTROL
SIGNALS

2-15

MICROSUBROUTINE
REGISTER

ADDRESS
INCREMENTER REGISTER

+1
MICRO-
PROGRAM
COUNTER

- AN 7
ADDRESS

PIPELINE
ROM REGISTER

OPCODE

B xc= |2

— CONTROL
SIGNALS

Figure 2-13a. Adding Microprogram Counter

MUX SELECT SYMBOLIC REFERENCE

00

01

10

1"

JMPOP

CALL MICROSUB

OR JMP

RTS

CONT

ACTION

TRANSFER CONTROL TO ADDRESS
POINTED TO BY OPCODE

TRANSFER CONTROL TO ADDRESS
POINTED TO IN NEXT ADDRESS FIELD

RETURN FROM MICROSUBROUTINE BY
PROCEEDING WITH ADDRESS POINTED
TO BY MICROSUBROUTINE REGISTER

PROCEED WITH ADDRESS POINTED
TO BY MICROPROGRAM COUNTER

Figure 2-13b. Interpretation of MUX Select Lines

2-16

— CONTROL SIGNALS

MICROSUBROUTINE ADDRESS
REGISTER INCREMENTER REGISTER
+1
MICRO-
PROGRAM
COUNTER
N
ADDRESS PIPELINE
MUX ROM REGISTER
M ‘
U
X
OPCODE
SEL
EXTERNAL CONDITIONAL JUMP SELECT
CONDITION
EXECUTION
LOGIC MUX SELECT LINES

Figure 2-14a. Adding Conditional Branching Capability to Control Unit

\——— JUMP ADDRESS

CONTROL SIGNALS

MUX SELECT

Figure 2-14b. Microword Format

2-17

CONDITIONAL JUMP SELECT

DRESS field as JUMP ADDRESS in Figure 2-14B
because we need this field only to specify jump
addresses. This reflects the fact that the micropro-
gram counter allows us to execute sequential micro-
instructions.

Figure 2-15 provides a summary of the functions
performed by the EXECUTION LOGIC block. Notice,
in particular, that when the conditional jump select line
is high and the external condition is low, the control
unit continues execution with the following microin-
struction. Alternatively, if the jump select line is high
and the external condition is high, we take the course
of action specified in Figure 2-13b.

By adding the conditional jump capability, we can now
implement the BRANCHZ macroinstruction. To do
this, we use the ZERO ALU status line as our external
condition and use a microinstruction that implements
the conditions specified symbolically as CONDJMP in
Figure 2-15. This microinstruction resides in the
microprogram that executes the BRANCHZ macroin-
struction. Inthat microprogram, a decision is made to
load the MAR with the content of the program counter
or with the address contained in the IDR. The JUMP
ADDRESS field of the CONDJMP microinstruction
therefore contains the address of a sequence of
microinstructions that load the MAR with the content
of the IDR while the microinstructions following the
CONDJMP microinstruction load the MAR with the
content of the program counter. (See Figure 2-16.)

To this point, our conditional branch capability is
restricted to one external input, the ZERO ALU status
line. But we must accommodate the other ALU status
lines as well.

Figure 2-17 shows the addition of a mux to our control
unit. The inputs to the mux are the ALU status lines,
and the mux select lines are controlied by two addi-
tional bits that have been added to the microinstruc-
tion. This structure now allows us to JUMP condition-
ally on any one of the ALU status lines. In particular,
we can now implement both the BRANCHN and
BRANCHZ macroinstructions.

2.1.8 Implementing the Shift
Instructions

From Figure 2-2 we see that our control unit has the
facilities for decoding and executing every instruction
exceptthe SHIFT instructions. Forthese instructions,
we must shift the number of places specified in the
instruction, even though the ALU allows only one shift
perclock cycle. This requirementimplies thatwe must
repeat the microinstruction for executing a shift the
number of times specified by the shift count. To do so,
however, we must add a counter to our control unit

and incorporate new microinstructions for performing
these functions:

« Load the counter with the shift count.
« Decrement the counter.

« Branch to a location specified in the NEXT
ADDRESS field if the counter is not zero.

Let’s take a look at part of a microprogram for execut-
ing a SHIFT instruction. Because we have not yet
incorporated these functions into the control unit, we
present the microprogram using English statements
that describe the action we want the microinstruction
to perform:

» Load counter with shift count

» LOOP: Present code for shift to ALU

» Decrement counter

« If counter not equal to zero, branch to LOOP
+ Call FETCH

Each line of this microprogram corresponds to one
microinstruction. Rather than specify an absolute
location forthis microprogram, we use the label LOOP
as a placeholder. The last line of the microprogram
refers to the microsubroutine structure we described
previously. In this case, we request the operation by
using “Call” and denote the beginning location of the
microsubroutine for fetching the next instruction by
the label FETCH.

Figure 2-18A incorporates a counter into the control
unit that allows us to implement the SHIFT instruc-
tions. As shown in Table 2-4, we only need four bits
to specify all the functions performed by the control
unit. The EXECUTION BLOCK takes these four bits,
the condition code input and the zero-out signal from
the counter and provides four outputs to control the
counter and the mux.

Figure 2-18B shows the microword format that sup-
ports the control unit. The field designated microse-
quence control substitutes the encoding of Table 2-4
for some of the individual fields shown in Figure 2-
17B.

2.1.9 Machine Language Versus
Microprogramming

The sequencing of microinstructions is carried out by
asetof OPCODES as listedin Table 2-4. Forthe most
part, these OPCODES resemble those of an instruc-
tion set for a computer, albeit more limited in scope.

In essence, the execution of microinstructions bears
a strong resemblance to the execution of machine
instructions. As we have seen in this chapter, the

2-18

NOILONYLSNIOHOIW

3"VO LNOQ =X

LX3N HLIM @33004d INOD L L !
NOILONYLSNIOHOIN
IX3N H1IM a33004d INOD L b 0
H31SIDFH ANILNOYENSOHOIN AS OL
Q3LNIOd SSIHAQY HLIM a3300Hd S1H aNOD oL b b
NOILONYLSNI LX3N HLIM a33004d S1H aNOD ot L 0
Q7314 $S3HAAY 1X3N NI OL AILNIOd dINr ANOD HO
S$S3HAAY OL JOHINOO HIASNVHL 9NSOHOIN T1¥O ANOD 10 b b
NOILONY1SNIOHOIN dINF ANOD HO
LX3N HLIM d3300Hd gNSOHOIN T1YD ANOD 10 b 0
300040 A€ OL G3LNIOd
$S3HAAY OL TOHLINOD HI4SNVHL dOdr ANOD 00 b L
NOILONHLSNIOHOIN
LX3N HLIM @33004d dOdINr ANOD 00 b 0
i INOD L 0 X
S1H ot 0 X
g21-2 34NDI4 NI
SV NS dWr HO SNSOHOIN T1¥D 10 0 X
dodnr 00 0 1X
NOILOV JONIYIJTH OINOIWAS 19373S XN 193713S dINNF TYNOILIANOD NOILIGNOD

Figure 2-15. Conditional Branch Selection

2-19

COND JMP LDIDR

MICROINSTRUCTIONS FOR
LOADING MAR WITH
PROGRAM COUNTER

MORE:

—> LDIDR:

—

ZEROALU =1

MICROINSTRUCTIONS FOR
LOADING MAR WITH IDR

JMP MORE

Figure 2-16. Conditional Branch Operation

control unit supports subroutines, loops and condi-
tional and unconditional branches. In fact, these
structures are virtually identical to those of a compu-
ter. As aresult, the designs of a microprogram and a
machine program are very similar and are based on
the same considerations.

2.1.10 Control Unit as Processor

In a very important sense, we have created in minia-
ture some of the elements of the computer system
whose control network we are now designing. It is as
if we have a computer within a computer. The differ-
ence isthat while our control unit computeris rudimen-
tary, it has the ability to implement the control section
of an elaborate computer system. Furthermore, this
structure allows us to rapidly make changes to the
control unit simply by changing a microprogram.
Contrast this to making a change to a sequential logic
network supporting over 100 instructions. It is not
hardto see that this is intrinsically a simpler approach.

2.1.11 Conclusion

The subject of microprogramming and the design of
control unit structures for executing microprograms
continues to evolve We have presented the broad
outlines of microprogramming along with the design of
an underlying control unit structure similar to the
design of the Am29PL141 chip.

The traditional use of microprogramming has beenin
the design of the control unit of various computer

systems, ranging frommicrocomputers to mainframes.
However, the use of microprogramming goes far
beyond that. The major point is that by using what
amounts to software techniques, we are able to
implement almost any general sequential network. In
doing so, we gain the advantage of designing compli-
cated networks that are easy to modify. Beyond that,
the design process itself is made more efficient be-
cause it generally takes less time to write a micropro-
gram to implement hardware structures than it takes
to design hardware.

2.2 Am29PL100
MICROPROGRAMMING EXAMPLES

Section 2-1 introduced the major ideas of micropro-
gramming as an aid in understanding the structure
and use of the Am29PL100 family of programmable
controllers. In this section, we build upon that knowl-
edge and show how to design sequential logic circuits
using the Am29PL100.

The goal of this section is to blur the distinction
between microprogramming and sequential logic
design. As pointed out in Section 2.1, microprogram-
ming is a general logic design technique and there-
fore is an alternative approach to implementing
complex digital logic circuits.

During the course of this section, we will design five
circuits that are representative of the range of prob-
lems suitable for Am29PL100 implementation:

2-20

MICROSUBROUTINE ADDRESS
REGISTER INCREMENTER REGISTER
+1
MICRO-
PROGRAM
COUNTER
- A7
ADDRESS PIPELINE
MUX ROM REGISTER
M '
U ¢ |— CONTROL SIGNALS
X
OPCODE ————_|
SEL
EXECUTION
LOGIC
ALU
STATUS u
X

Figure 2-17a. Adding External Condition MUX to Con trol Unit

I

L—— JUMP ADDRESS

CONTROL SIGNALS

CONDITION MUX SELECT

ADDRESS MUX SELECT

CONDITION JUMP SELECT

Figure 2-17b. Microword Format

2-21

MICROSUBROUTINE ADDRESS
REGISTER INCREMENTER REGISTER

MICRO-
PROGRAM
COUNTER
- N7
ADDRESS PIPELINE
MUX ROM REGISTER
M ’
u | CONTROL
SIGNALS
X
OPCODE ———{
COUNT —
DEC
COUNTER o
CNTR=0 _‘
ALU
sTATUS []
M
U
X EXECUTION MICROSEQUENCE CONTROL
LOGIC CROSEQ o

SEL

Figure 2-18a. Adding Counter to Control Unit

L JUMP ADDRESS
CONTROL SIGNALS

CONDITION MUX SEC

MICROSEQUENCE CONTROL

Figure 2-18b. Microword Format

2-22

)
c

O =

BUS REQUEST LINE

/BR3
/BR2
/BR1
/BRO

HIGHEST

LOWEST

Table 2-4. Bus Request Prilority

« Burst counter

« Memory controller
« Bus arbiter

« VME bus arbiter

« Frame store

Each of these examples shows the interplay between
the hardware function to perform and the micropro-
gramming structures that can be used to implement
that function. By the end of this section, we will have
a repertoire of techniques that can be used to tackle
a wide range of logic-design problems.

Thischapterassumes afamiliarity withthe Am29PL141
data sheet to the point of knowing the general and
comparison microinstruction format. On the other
hand, it is not necessary, at this point, to know the
function of any of the microinstructions.

Each example introduces a number of microinstruc-
tions and supporting programming structures. As we
work through the examples, corsult the data sheet

(order number 04179) for a detailed description of
each microinstruction that is introduced.

2.2.1 Example 1: Burst Counter

Acounteris an indispensable building block of almost
any sequential logic circuit. Itisused to count events,
measure the duration of an event, measure the time
interval between events, create time delays, and
address memory.

Let’s consider the implementation of a burst counter.
Figure 2-19 shows adiagramof this circuitthat operates
according to the timing diagram of Figure 2-20. The
following major events take place:

« Wait for LOAD time to go low.

- Load counter with value contained on counter
inputs.

« Assert carry-out signal low.
« Decrement counter.

COUNT

LOAD ——l A 6

CLK —e I LOAD DATA EN

6 BIT DOWN COUNTER

—D——) BURST CLK

PIN FUNCTIONS

LOAD: WHEN LOW, VALUE OF COUNT LOADED INTO COUNTER ON RISING EDGE OF CLK

CO: HIGH WHEN COUNTER IS IN STATE ZERO

EN: COUNTING ENABLED WHEN LOW

Figure 2-19. 6-Bit Burst Counter

2-23

» Wait for counter to count down to zero.
» Assert carry-out signal high.
« Go to the first step

The Am29PL141 also can be used to implement a
burst counter since it contains a counter and the
microinstructions used to load and decrement the
counter. To see how this works, take a look at the
circuit shown in Figure 2-21 and the microprogram
shown in Figure 2-22. This circuit allows us to pro-
gram a burst of 1-64 clock pulses depending on the
value contained on the TEST inputs (see Table 2-5).

To gain a fuller understanding of the microprogram,
let’s explore the function of the four statements in
greater detail:)

Statement 1 — This statement puts the Am29PL 141
into anidle condition. By settingthe POL fieldto 1, this
microinstruction executes repeatedly while the LOAD
line is high. When the LOAD line goes low, execution
proceeds with the microinstruction at location 10 as
specified by the contents ofthe DATA field. Output PO
remains high while this microinstruction executes,
thus preventing clock-pulse generation.

The CC input is selected as the conditional input
instead of one of the TEST inputs. This frees up all six
TEST inputs for use in loading the counter.

Statement 2 — This statement loads the counter
from the TEST inputs. The DATA field contains a
mask value of 3F, allowing a burst of up to 64 clock
pulses. Alternatively, a mask value of F permits only
the low-order four TEST inputs to be loaded into the
counter, allowing a burst of up to 16 clock pulses. As
in Statement 1, output PO remains high during the
execution of this microinstruction, thus preventing
clock pulse generation.

Inthis statement, we want to load the counter uncon-

ditionally. However, the microinstruction LDTM is
conditional and is dependent onthe state of one of the
TEST inputs, the CC input orthe EQ FF.. To force this
microinstruction to execute unconditionally, we take
advantage of the fact that the EQ FF is zero after the
Am29PL141 is reset. We therefore select the EQ FF
in the TEST field and set the POL field to 1.

Statement 3— This microinstruction decrements the
counter repeatedly until a count of zero is reached.
Execution then proceeds with the next sequential
instruction. Output PO remains low while this micro-
instruction executes, allowing clock pulses to be
gated.

Normally, this microinstruction executes once and, if
the counter is not zero, a branch is taken to the
location specified by the DATA field. Inthis example,
the DATA field contains the address of its own micro-
instruction, resulting in repeated execution.

Statement 4 — This statement causes a branch back
to Statement 1 since the counter is zero. The circuit
thenremainsinanidle state untilthe next LOAD pulse
occurs.) ‘

The timing diagram of Figure 2-23 reflects the be-
havior of this microprogram. This timing diagram
differs slightly from Figure 2-20 in that the carry-out
line (P0) goes low one clock period after the LOAD
line goes low and the number of burst clocks is greater
by one. Otherwise, the Am29PL141 implementation
preserves the basic functionality of the discrete logic
design.

So far we have considered a burst counter operating
at rates up to 20 MHz. For a burst counter operating
atratesupto 10 MHz, we canuse the PO output as the
burst clock and eliminate the external AND gate (see
Figure 2-24a). To see how this is done, look at the

microprogram contained in Figure 2-24B. In this

TEST INPUT VALUE
0

1
2

62
63

BURST COUNT
1
2
3

63
64

Table 2-5. Burst Count Versus Test Input Value

2-24

ok L 1L L] o T O e I

oao” | |

o 1 ——
0 X4+ X X2 X 1t X 0

BURST LK L L ML

Figure 2-20. Timing Diagram of Burst Counter (Count = 4)

program, we use the LPPL microinstruction to loop
through Statements 3 and 4 the number of times
initially contained in the counter plus 1. Inthis way, we
sequence through program locations 11 and 12 and
in so doing create a square wave output at PO with a
frequency of one-half the clock input. Figure 2-25
indicates the locations traversed by this program
upon bringing the LOAD line low with a value of 2 at
the TEST inputs.

This example shows how the Am29PL141 can be
used to implement a burst counter. While this imple-
mentation is limited to bursts of 64 clock pulses, burst
counts of up to 2 million also can be created. Further-
more, a burst counter is but one type of counter that
can be implemented with the Am29PL141. Later, we
will design more complicated counter structures.

2.2.2 Example 2: Simple Memory
Controller

The Am29PL141 also can be used as a dynamic
memory controller (see Figures 2-26 and 2-27). Inthis
application, the Am29PL141 performs two functions:

« Generates the proper timing signals to control
the dynamic memory array

» Synchronizes the timing of the memory system
with the host CPU

inour design, we have a 64-KByte memory array built
out of eight 64-Kbit memory chips. Each memaory chip
has 8 address lines (see Figure 2-28), yet 16 address
lines are needed to address a single memory loca-
tion. Consequently, the 16 addresses are segmented
into two groups of eight bits, referred to as the Row
and Column addresses. As shown in Figure 2-29, the
Row addresses are first strobed into the memory by
the control line Row Address Strobe (RAS). Then the
Column addresses are strobed by the control signal
Column Address Strobe (CAS). CAS is also used in
conjunctionwith the control signal READ to write data
into or read data from the memory chip. If READ is
low, data is written into the memory chip on the falling
edge of CAS. Alternatively, if READ is high, data is
read from the memory after CAS goes low.

Figure 2-30 presents a timing diagram of the mem-
ory system. The CPU asserts the signal RD to read

LOAD ——cc
6 T0
COUNT+ .
T5

CLK > PO

BURST CLK

Figure 2-21. Am29PL141 Implementation of Burst Counter

2-25

STATEMENT # LOCATION % OPCODE ﬂ. TEST DATA OUTPUTS
1 0 0 WAIT 1 cc 10 1
2 10 0 LDTM 1 EQ 3F 1
3 11 0 LPPL 0 0 11 0
4 12 0 GO TO PLZ 0 0 0 1

NOTES: THE FOLLOWING SYMBOLS ARE USED AND HAVE THE INDICATED VALUES

SYMBOL VALUE
CcC 6
EQ 7

v Figure 2-22. Microprogram for Burst Counter

data fromthe memory and the signal WR to write data
into the memory. In response to either one of these
signals, the memory controller generates the proper
sequence of control signals that satisfy the timing
requirements specified in Figure 2-29.

As shown in Figure 2-27, two address buffers, con-
trolled by the signals ROWEN and COLEN, furnish
the Row and Column addresses respectively. In
addition, a data buffer is used to isolate the memory
system from the CPU DATA bus. When writing data
into or reading data from the memory, the memory
controller generates the signal DATEN to enable the
databuffer. Also the signal READ controls the direction
of the buffer. During a read cycle this signal is high
and during a write cycle it is low.

Figure 2-31 shows how the CPU and memory system
are interlocked by the signal OPCOMP. The memory
controller generates this signal to allow the CPU to
know when the memory system is about to write data
into the memory or provide valid data for a READ
operation. Ifthe CPU cannot respond immediately to
OPCOMP, it continues to assert either RD or WR. In
doing so, the memory cycle is lengthened. This is
reflected in Figure 2-30, which shows that the signal
RD is negated two clock times after OPCOMP is
asserted, while the signal WR is negated only one
clock period after OPCOMP is asserted. Conse-
quently, the read cycle is one clock period longer than
the write cycle.

The memory controller performs three fundamental
tasks:

» Scans RD and WR lines.
The memory controller continuously scans the
RD and WR lines. If neither line is active, the

memory controller asserts the control signals
with the values shown in Figure 2-32A.

 Executes READ cyéle.

When the RD signal goes low, the memory
controller initiates the sequence of control sig-
nals shown for the READ cycle in Figure 2-30.
Figure 2-32B enumerates the values of the
control signals corresponding to clock periods
1-5 of Figure 2-30.

o Executes WRITE cycle.

When the WR signal goes low, the memory
controller initiates the sequence of control sig-
nals shown for the WRITE cycle in Figure 2-30.
Figure 2-32C enumerates the values of the
control signals corresponding to clock periods
1'-4’ of Figure 2-30.

To implement the memory controller using the
Am29PL141, we need to write three microprograms,
one for each of the tasks discussed above.

Let’s take a look at the microprogram in Figure 2-33.
Notice that the microinstruction fields contain symbols
whose values are defined at the bottom of the figure.
These symbols make the microprogram easier to
read and are a conventionused in other figures in this
chapter.

As shown in Figure 2-33, Statements 1-3 carry out the
steps for scanning the RD and WR lines (see Figure
2-27 for pin assignments). If neither RD norWR goes
low, the microprogram will continuously cycle through
these microinstructions. While it does, the control
outputs have a value of 7C hex, which gives us the
proper state for the quiescent condition (see Figure 2-
32a). Also notice that the GOTOPL microinstruction
in Statement 3 executes unconditionally since the EQ
FF is zero after the Am29PL 141 is reset.

Statements 1 and 2 both use the CALPL microinstruc-
tion. For this microinstruction, if the condition se-
lected onthe TEST input is satisfied, execution pro-

2-26

ot I S I N R N A R I
oap |
PO | I

BURST CLK [L1 L 7 b1

Figure 2-23. Timing Diagram for Am29PL141 Burst Counter

LOAD ——¢cc
COUNT + T
CLK ——p PO|——>» BURST CLK

Figure 2-24a. Microprogram for Burst Counter Using PO Output

STATEMENT # LABEL LOC OE OPCODE POL TEST DATA OUTPUTS

1 START 0 WAIT 1 cc 10 1

2 10 LDTM 1 EQ 3F 1

3 LOOP 11 CONT 0 0 0 0

4 12 LPPL 0 0 LOOP 1

5 13 GOTOPLZ 0 0 START 1

SYMBOL VALUE

cc 6
EQ 7
START 0
Loop 11

Figure 2-24b. Burst Counter Using PO Output As Burst Clock

2-27

LOAD LOCATIONS PO

.
.
.

0 0 1
1 10 1
. 11 0
. 12 1
. 11 0
. 12 1
. 11 0
. 12 1
. 13 1
. 0 1
1 0 1

Figure 2-25. Program Locations Traversed After Load Line Goes LOW

CPU <

ADDRESS
DATA
DATA ADDRESS
RDorWR —— * CONTROL
MEMORY SYSTEM
OPCOMP <€

<«
MEMORY CONTROLLER

Figure 2-26. Block Diagram of Memory System

2-28

ADDRESSES v
COLEN & N/ l & A/ | 7418244
ROWEN
%8
ﬁé ol RAS ADDRESS
CAS Q| ¢as 64Kx8 BIT
W DATA
A48
READ
DATEN OE —@ DIR
8 ' 74LS245
VA
DATA v
25 2
RD ———™ Po |——>» OPCOMP
WR —— Pt [>— > ROWEN
P2 ——)‘; COLEN
RESET —0)| Res Ps |2 — 3 CaAs
” Ps |— 3 READ
CLK ——— Ps [=—3 DATEN
29PL141
Figure 2-27. Simple Memory Controller
AO RAS
Al
A2 CAS CONTROL
ADDRESS A3 _
A4 RIW
A5
A6 D }DATA
~ A7

Figure 2-28. 64K Bit Dynamic Memory Chip

2-29

ceeds with the microinstruction whose address is
specified in the DATA field. In Statement 1 for
example, when RD is zero, execution proceeds with
the microinstruction at location 10, since the value of
the symbol READ in the DATA field is 10 hex. Also,
the address of the following microinstruction is saved
in the subroutine register (SREG). When the called
microsubroutine executes a RET microinstruction,
the content of the SREG is used to point to the next
microinstruction. In our example, the microinstruction

at location 2 is executed after a RET microinstruction.

Figure 2-34 presents a flow diagram for the
microprogram of Figure 2-33. The purpose of this
diagram is to present the major activities performed
by the microprogram without explicitly identifying the
specific microinstructions. Flow diagrams are valuable
visual aids as they helpfocus attention ontheinterplay
between the signal inputs and outputs.

5 :i
RAS |
ADDRESS COLUMN
—— <
CAS IN|
—>
READ
I(—— 7 —>e—— 3 ————>»| READ
CYCLE
< 12
READ 1
WRITE
CYCLE
DATA
-~

MIN MAX
1. ROW ADDRESS SETUP TIME 20
2. ROW ADDRESS HOLD TIME 0
3. COLUMN ADDRESS SETUP TIME 20
4. COLUMN ADDRESS HOLD TIME 0

5. PULSE DURATION RAS LOW 180 10000

6. PULSE DURATION CAS LOW 80 10000
7. READ COMMAND SETUP TIME 20
8. READ COMMAND HOLD TIME 20
9. WRITE COMMAND SETUP TIME 20
10. WRITE COMMAND HOLD TIME 20
11. RAS TO CAS DELAY 80
12. ACCESS TIME FROM CAS 80
13. DATA IN SETUP TIME 20
14. DATA IN HOLD TIME 20

Figure 2-29. Memory Timing Requirements

2-30

CLK 1 i 1 ! | | 1 | 1 1 1 1 |] 1 | 1
CLK PERIOD 1 2 3 4 5§ 1T 2 3 &

m L |

WR

OPCOMP |
ROWEN

COLEN |
RAS |
CAS l |

READ

DATEN |

DATA
ROW X COL

}q— READ CYCLE “){ }(—— WRITE CYCLE—)‘

ADDRESSES |

Figure 2-30. Timing Diagram of Simple Memory Controller

RD or WR
=~ Pl

OPCOMP

Figure 2-31. Interlocking of RD, WR And OPCOMP

2-31

81949 ellum Buling senjep [eubis j04juo) Alowsyy 9zZg-z 84nbi4

€0 I I 0 0 0 0 0 4
€0 l I 0 0 0 0 0 £
ch 0 8 0 0 I 0 0 .C
12°] 0 0 I 0 1 0 I NS
ON X3H IN3TIVAIND3 dWODdO NIMOod N37020 wﬁ % avad N3lvd aold3ad Xo010
(od) (1d) (2d) (ed) (bd) (gd) (od)
8]9AD peay Bulng senjep |eubis josyuo) Alowaly ‘qze-g ainbi4
€2 8 L 0 0 0 8 0 g
€2 I I 0 0 0 I 0 14
o4 8 I 0 0 0 I 0 €
2 0 b 0 0 ! ! 0 4
v 0 0 8 0 8 3 l l
ON X3H LNITIVAINO3 dNOOdO N3IMOH N300 m,mlm, mlm av3ad N3Llvd aold3ad ©¥o010
(0d) (1d) (2d) (ed) (vd) (sd) (9d)
eje]s Juassainy Bulng senjep jeubis [onuo) Alowaly “ezZg-Z ainbi4
oL 0 0 I I I I b
ON X3H INIIVAIND3 dWOJdO N3Mod N3700 wﬁ % av3ad N3Lva

(0d) (kd) (ed) (ed) " (vd) (5d) (9d)

2-32

1a]jonuog Alowayy sjdwg 1o} weiboidololpy £e-2 @inbiyg

€l
cl
L
oL

<t 0 O N~ ©

' HM vz JHON
oL 31al 0 ay 0z 3LIHM
€0 dO-HM-SVO 0 ou3z et 4001
2 HOLIMS 0 MO ot avay
vS HMSVH b HOIH 0 NVOS
anva T08NAS anva I08NAS anva I08WAS
NVOS OL NHN13H 37al NvOS ~ ©3 HOH 134 Mol 2
L=HMINNLIVM dOHM'SYO dOOT M MOT 1dOL0D MOT €2 4001
dNOOdO B SYQ IHISSY dO-HM-SYO ~ OH3IZ ~ OW3Z OH3Z INOO MOT1 22
SY344Ng SSIHAAY HOLIMS ~ HOLIMS Oy3z OW3Z oWz INOD MOT 12
SVd 1H3SSY HMSVH OW3z OW3z ouaZ INOD MOT1 02 3LEM
I10AD 3LIHM 3LN03X3 OL ANILNOHENSOHOIN
N¥OS OL NHNL3Y oL NvOS 03 HOIH 13y Mol #i 3HOW
L= Q4 TN LIVM €2 WON a4 MOT Luvym Mol €l
dINOJdO ¥ SYO LHISSY €2 Oy3z oW3z oWz INOD MO1 2k
SH344Nd SSIHAAY HOLIMS 28 oWaz OW3Z oWAZ INOD MOT1 1
Svd 143SSY VL oH3z OW3Z OoM3Z INOD MOT Ot avay
310A0 @v3H 31N03X3 OL INLLNOHENSOHOIN
NVOS OL HONvHS oL NYOS ~ ©3 HOH 1dO10D 0 4
0= HM 41 3LEM TIVO oL ALEM WM HOH 1d¥0 0 '
0= 0y 41 avay Tv0 oL avay ad HOH 140 0 0 NVOS
S1NdNI HM B Q4 ONINNVOS HO4 OO NIVIN
SINIWNOD SLNdLno viva fs3r 10d 300040 30 Q0T 13av

ON LN3IW3ILVILS

2-33

— NO

YES

RAS =0

[+

ROWEN = 1

Gl

COLEN =

DATEN =0

CAS =0

OPCOMP = 1

YES

ROWEN =0

COLEN =1

RAS = 1

CAS =1

DATEN =1

YES

ROWEN =0

E

COLEN =1

RAS =1

CAS =1

DATEN =1

READ =1

Figure 2-34. Flow Diagram for Simple Memory Controller Microprogram

2-34

The two diamonds at the top of Figure 2-34 pictorially
present the activity of Statements 1 and 2 of the scan
loop. Statement 3 is not explicitly identified although
it is implied by the line that joins the two diamonds at
the top of the figure.

The left-hand side of Figure 2-34 lists the steps
performed by the READ microsubroutine. Each rec-
tangle contains a statement that identifies the desired
state of the control outputs. The number at the upper
right of each rectangle refers to a statement number
listed in Figure 2-33. Notice that executing State-
ments 4-6 results in the control outputs tracing out the
activity specified by clock periods 1-3 in Figure 2-30
(also see Figure 2-32b).

Statement 7 performs the function denoted by the
diamond in the middle of the flow diagram for the
READ microsubroutine. The purpose of this state-
ment is to implement the interlocking between the
CPU and the memory. As discussed above, the
READ cycle is lengthened if the CPU does not negate
its RD signal after receiving the control signal OP-
COMP from the memory controller. In effect, the
memory controller freezes the state of the control
lines until the CPU negates the RD signal.

The WAIT microinstruction holds the control outputs
inthe state defined by the OUTPUT field (23 hex) until
RD goes high. Execution then proceeds with State-
ment 8, which returns the control outputs to the
quiescent state. Statement 8 contains a conditional
RET microinstructionthat is dependentonthe state of
the EQ FF. Consequently, execution returns uncon-
ditionally to Statement 2 in the scan loop as discussed
above.

When the WR line goes low, the WRITE microsub-
routine is executed. Statements 9-11 (see Figure 2-
33) are virtually identical to Statements 4-6 of the
READ microsubroutine. The only difference is inthe
values of the OUTPUT field, which reflects the fact
that the READ control signal is low in the WRITE
microsubroutine and high in the READ microsubrou-
tine. (See Figures 2-32b and 2-32c.) As aresult, the
timing shown in Figure 2-30 for clock periods 1'-3' is
properly synthesized.

The microinstruction GOTOPL of Statement 12 exe-
cutes repeatedly until WR goes high since the DATA
field contains the address of its own microinstruction.
In effect, it behaves identically to the WAIT microin-
struction and is an alternative way to implement await
state. Statement 13 is identical to Statement 8, and
when it executes, control returns to Statement 3 inthe
scan loop.

This example shows the power of the Am29PL141.

Usingjust 13 microinstructions, the complicatedtiming
structure of the memory controller is completely
implemented. In contrast to a discrete logic imple-
mentation, changingthe timing is easily accomplished
by changing just a few lines of microcode.

2.2.3 Example 3: Bus Arbiter

A common problem in digital design is arbitrating
amongdifferent requests and thentaking appropriate
action. Examples of arbitrating include:

Interrupt controller — An interrupt controller fields
a number of interrupt requests from various devices
and then provides a code indicating which interrupt
will be serviced.

Dual-port memory arbiter — A memory arbiter
fields requests for access to a shared memory from
two different CPUs and then grants memory access
to one of them.

Bus arbiter — A bus arbiter fields requests from
several CPUs foruse of a shared bus and then grants
bus access to one of them.

A general view of this process is presented in Fig-
ure 2-35, which shows the three major phases of the
arbitration process: :

- Encode requests into a binary word.
= Select one of the requests.

- Implement a series of actions to carry out the
requests.

Requests may arise one at a time or simultaneously.
In the memory controller example, the CPU gener-
ated either a RD signal or a WR signal, but not both
at the same time. However, in many systems, simul-
taneous requests are made. Forthese, as part of the
selection process, the arbiter must incorporate a
facility for prioritizing the process.

To explore these ideas further, let's design a bus
arbiter for a 4-processor system sharing a common
memory (see Figures 2-36 and 2-37). Each proces-
sor has three arbitration control lines that are used to
gain access to the bus (see Figures 2-38 and 2-39):

Bus Request (BR) — A CPU requests bus use by
asserting its individual BR signal to the bus arbiter.

Bus Grant (BG) — When BBYS is not asserted, the
bus arbiter arbitrates among any pending requests
and asserts the appropriate BG signalto the success-
ful requester.

Bus Busy (BBYS) — After receiving BG from the

2-35

REQUEST 1 GRANTED ACTIONS TO
IMPLEMENT
REQUEST 1 REQUEST 1
REQUEST 2
REQUEST N REQUEST N GRANTED ACTIONS TO
IMPLEMENT -
ENCODE SELECT REQUEST N
REQUEST ONE REQUEST

IMPLEMENT REQUEST

Figure 2-35. Three Phases of Arbitration Process

arbiter, the selected requester asserts BBYS. When
the CPU finishes using the bus, it releases BBYS.
The bus arbiterthen arbitrates any pending requests.
Notice that BBYS is a common, open- collector line
driven by all the CPUs.

Our system has four processors. Atany giveninstant,
therefore, up to four bus requests can be active. To
provide orderly access to the bus, the bus arbiter pri-
oritizes these requests in accordance with Table 2-6.

Figure 2-40 illustrates how the priority scheme works
by showing two bus transactions. For the first trans-
action, CPU1 and CPU2 both request the bus at the
sametime. From Table 2-6 we see that CPU1, which
uses the BR3 line, has a higher priority than CPU2,
which uses the BR2 line. Consequently, the bus
arbiter grants the bus to CPU1. After completing its
transactions, CPU1 releases the bus by negating the
BBYSline. Sensingthe negation of BBYS, the arbiter
arbitrates pending requests. Since BR2 is still pend-
ing, and there are no other requests, the bus arbiter
asserts BG2. CPU2 now proceeds with its bus
transactions.

Figure 2-41 shows a simplified state diagram of the
bus arbiter that defines its behavior given any combi-
nation of bus requests. Five major statés are shown:

State 0 — This state represents the idle condition.
The bus arbiter remains in this state while the bus is
not busy and there are no pending bus requests.

State 1 — This state is reached when the bus is not
busy and CPU1 has asserted its bus request line.
Notice that other CPUs also may have made re-
quests. These requests are ignored, however, in
keeping with the priority defined by Table 2-6.

State 2 — This state is reached when the bus is not
busy, CPU1 is not requesting the bus, and CPU2 has
asserted its bus request line. Bus requests from
CPU3 and CPU4, if active, are ignored since they are
of lower priority.

State 3 — This state is reached when the bus is not
busy, neither CPU1 nor CPU2 have pending bus
requests, and CPU3 has asserted its bus request line.
A request from CPU4, if active, is ignored.

State 4 — This state is reached when the bus is not
busy and only CPU4 has asserted its bus request line.

Figures 2-42a and 2-42b show state transition tables
defining the transitions between State 0 and each of
the other states described above. Notice, in particu-
lar, that the state of the bus request lines is encoded
into a hex word, giving us 16 possible values. A
correspondence then is made between each value
and the next state reached by the bus arbiter.

Let s now turn our attentlon to implementing the bus
arbiter using the Am29PL141 (see Figure 2-37).

The state diagram of Figure 2-41 suggests that we
need to write five microprograms, one for each state.
The basic functions of these microprograms are out-
lined below (see Figure 2-43):

Microprogram for State 0 — This microprogram
examines the state of the TEST inputs and then,
using the state transition table in Figure 2-42b, de-
cides which microprogram to jump to next.

Microprogram for States 1-4 — Each of these
microprograms implements the timing indicated in
Figure 2-39. They are functionally identical to each

2-36

oog
1og
zog
£od

18)1qly pesed-LyL1d62WY "LE-Z 8nbi4

Ly id6cwy

€d
ed

0od

Il

s3u
2
sL
v
€L
2L

oL

oug
1ug
2ug
eHg

Atowspy paieys yum waisAs lsindwon lossadoid-inog .mw-w a.nbi4

AHOW3W

SNg TOH1INOD

¥NdO Ndo
SA88 [— - - SA8E [

098 oud | €28 edg

A A H3Ligyv sna
> edg-odg
. €98-094

+ sAgg

n SAg8

<
SN V1va <€
SNg SS34Aav <«

YVYY

2-37

19)1qu4y sng jo weibejq Bujwi] diseq "6¢-Z 84nbi4

weisAsqns J211quy sng Jo MaIA Pejieleq "8e-Z enbid

¥Ndo €Nndo

2ndd

Ndo

o8

ua sAgg D8 HE sAes o8

H8 SA88

o8

ug sAsg

A

A A

A

d3ligdv sna

> VW

+

sAgg

eHg
zug
1ug
oug

£og
208
108
oog

2-38

sisenbay aAljoy om| 1o} weibe|q Bujwiy "op-z 8inbig

sgg

008
108
208

g08

oug
58
258

eug

M0

2-39

BBYS =1

+1'-(EW3 0) * BBYS=1)

(
+2':(BR3=1)" (BR2=0)* (BBYS = 1)
+3* (BR3=1)* (BR2=1)" (BR1=0) " (BBYS=1)
:(BR3=1)*(BR2=1)*(BR1=1)* (BRO=0)"* (BBYS = 1)

R2 =
+:(BR3=1)*(BR2=1)* (BR1=1)*(BRO=1) * (BBYS = 1)

Figure 2-41. Simplified State Diagram of Bus Arbiter Showing State Selection

other and differ only in the set of bus request/grant
lines that are activated.

Let's take a closer look at State 0. In this state, it is
necessary to arbitrate among all bus requests within
one clock cycle. Consequently, we cannot write a
microprogram that simply scans each of the bus
request lines, one after the other, as we did in the
memory controller microprogram. Fortunately, the
Am29PL 141 hasthe GOTOTM microinstruction, which
allows us to examine the TEST lines in parallel.

The GOTOTM microinstructionis a conditionalbranch
instruction that uses the TEST inputs to point to the
next microinstruction to be executed.Figure 2-44
indicates how the GOTOTM microinstruction works.
As shown, location F contains the GOTOTM microin-

structionwith a mask value of F. Withthis mask value,
only the lower four TEST inputs are used.

Let's see what happens when this microinstruction
executes. If the test inputs are all high (see Table 2-
7), control passes back to location F. Therefore, this
microinstruction executes repeatedly until the TEST
inputs assume a new value. When that happens,
control is passed to the microinstruction whose ad-
dress is specified in Table 2-7. During the next clock
cycle, the selected GOTOPL microinstruction in Fig-
ure 2-44 executes and a branch is taken to the
address specified in the DATA field.

The structure outlined in Figure 2-44 allows us to
implement the State 0 microprogram. As noted
above, Figure 2-42b contains the state transition

2-40

NEXT STATE

0

BR3
X X
Figure 2-42a. Compact State Transitions

X

NEXT STATE

HEX EQUIV

BR3

Q
_R
o
m

_1

Q|
[

0
2-41

0
Figure 2-42b. Expanded State Transitions

0

0

!

STATE 0

MICROPROGRAM
FOR STATE 0

GO TO STATE 1

GO TO STATE 2

GO TO STATE 3

GO TO STATE 4

I

STATE 1 MICROPROGRAM

FOR STATE 1

GO TO STATE 0

STATE 4 MICROPROGRAM

FOR STATE 4

GO TO STATE 0

Figure 2-43. Overall Structure and Interaction Between Microprograms for Bus Arbiter

table that defines the conditions under which transi-
tions take place from State 0 to States 1—4. Now take
a look at Figure 2-45a and notice the locations con-
taining a GOTO ST1 microinstruction. (GOTO refers
to the GOTOPL microinstruction, and ST1 is the
address contained in the DATA field.) These loca-
tions are precisely those corresponding to the HEX
EQUIVALENT column of Figure 2-42b. In a similar
vein, Figure 2-45b shows that locations 1,5,9 and D
contain GOTO ST2 microinstructions corresponding
again to the HEX EQUIVALENT column in Figure 2-
42b.

Locations O-E in Figure 2-44 are called a jump table
as they contain a table of addresses of micropro-
grams. Inthe GOTOTM microinstruction, the TEST
inputs function as an index into this table. In our
example, the jump table implements the priority
scheme indicated by Table 2-6. Notice, however, that
we can establish other priorities by simply changing
the addresses in the jump table.

Let’s consider now the microprograms for States 1—4.
As stated above, the basic function of each of these
microprograms is to implement the timing diagram
shown in Figure 2-39. This task is similar to the
READ and WRITE microsubroutines of the memory
controller. .

Figure 2-39 has been redrawn in Figure 2-46 to show
the activity that takes place in State 1. Notice, in
particular, that BBYS is asserted two clock periods
after BG ratherthanone clock period later as in Figure
2-39. The reasonforthisisthatthe BR,BG and BBYS
are interlocked and not explicitly dependent upon any
specified time delay between signal transitions.

Figure 2-47 presents a flow diagram that helps bring
out the relationships between the bus arbitration
signals. As shown, the question within a diamond
refers to the state of the selected signal on the TEST
inputs. The rectangle to the left of each diamond
contains the state of the OUTPUT signal that is
relevant for State 1.

Notice that by tracing through the statements in
Figure 2-47, we wind up synthesizing the timing of
Figure 2-46. Also, State 1 can be seen as three
substates since each diamond represents, in fact, a
new state of the bus arbiter. These new states are
labelled in parentheses at the right of each diamond
in Figure 2-47. Figure 2-41 has been redrawn in
Figure 2-48 to include these new states and repre-
sents the complete state diagram of the bus arbiter.

The microprogram for State 1 is presented in Figure
2-49. As shown, it is written in the Am29PL141

2-42

PU BUS REQUEST LINE

PRIORITY

WD =

BR3
BR2
BRI
BRO

1 HIGHEST

2
3
4 LOWEST

Table 2-6. Bus-Request Priority

T3 T2 T1 T0
0O 0 o0 o
0o 0o o 1
0o 0 1 o0
o 0o 1 1
01 0 O
o 1 0 1
o 1 1 0
o 1 1 1
1 0 0 O
1 0 0 1
1.0 1 o0
i 0 1 1
1 1 0 O
1 1 0 1
1 1 1 0
1 1 1 1

ADDRESS POINTED TO

o

MMOOI» O ®NOONH_E N —=

Table 2-7. Value of Test Inputs Versus Branch Address

assembler language. This language emphasizes the
logical functioning of the microinstructions and re-
lieves the programmer of having to fill in each field of
the microinstruction. As a result, microprograms are
easier to write and understand. Notice in Figure 2-49
that the three program statements correspond to the
three diamonds in Figure 2-47.

The entire microprogram for the bus arbiter is shown
in Figure 2-50. The microprogramfor State 0 consists
of a 15-entry jump table and one microinstruction and
the microprograms for States 1—4 each consist of
three microinstructions.

The only statement we have not yet discussed is the
microinstruction at location 3F, labelled “PON.”
Recall from the Am29PL141 data sheet that when
RESET is activated, address 3F is presented to the
Am29PL141 PROM. As aresult, the microinstruction
atlocation 3F is the first one executed after RESET is
released. Forour example, the microprogram waits
at location 3F until the BBYS goes high. When this

happens, the entire system has reached a stable
operating condition and the arbiter enters State 0.

The bus arbiter presented in this section is an ex-
ample of a fairly complex digital design that you can,
however, implement very simply using the
Am29PL141. Infact, comparing the state diagram in
Figure 2-48 to the microprogram in Figure 2-50, we
see that each state is implemented using just one
microinstruction.

Many digital systems can be represented by state
diagrams such as thatin Figure 2-48. The techniques
developed in this example are quite general and are
applicable to the design of a broad range of digital
systems.

2.2.4 Example 4: VME Bus Arbiter

In the last example, we designed a bus arbiter that
used a fixed priority (see Table 2-8). In general, this
scheme works well. However, when all of the CPUs

2-43

ADDRESS
0 GOTOPL (PROG 0)

——>» PROG 0

GOTOPL (PROG 7)

GOTOPL (PROG E)
GOTOTM, MASK = F

MTMOOT®>» © 0N KA WN =

. > .

» PROG 7

~——>» PROGE

Figure 2-44. Operation of GOTOTM Microinstruction

are making frequent bus requests, the CPUs at the
two highest priority levels gain access to the bus, but
those at the lower levels do not.

Figure 2-51 shows atiming diagram of the activity that
takes place when three CPUs repeatedly make bus
requests. As shown, the arbiter alternately honors
requests from CPU1 and CPU2. In contrast, CPU3 is
totally locked out and is never granted bus access. To
circumventthis problem, abus arbiter also can employ
a rotating priority scheme. In this scheme, eachtime
the bus arbiter goes through an arbitration cycle, it
does so using a different set of priorities.

Let’s illustrate this with an example. Consider a 3-
processor system sharing a bus. As shown in Figure
2-52, three priority tables are used, designated PRI1,
PRI2 and PRI3. Now look at Figure 2-53. In this
timing diagram, all three CPUs make repeated bus
requests as in Figure 2-51. This time, however, all
three CPUs have equal access to the bus.

The standard VME Bus Specification Manual defines

two bus arbiter options: priority (PRI) and round robin
select (RRS). The PRI VME bus arbiter uses a fixed
priority scheme and functions in a manner similar to
the bus arbiter of Example 3. The RRS VME bus
arbiter employs a rotating priority scheme as de-
scribed above, except with four processors instead of
three.

QOur next design is the RRS VME bus arbiter. It is
similar to the bus arbiter of Example 3 in that it
employs the same protocol for the interaction be-
tween the Bus Request (BR), Bus Grant (BG) and
Bus Busy (BBYS) lines. The difference lies in its
rotating, rather than fixed, priority scheme. Before
proceeding, however, let’s review some of the high-
lights of the design in Example 3.

Figures 2-54 and 2-55 present an overview of the
structure of the microprograms for implementing the
bus arbiter in Example 3. As shown, the GOTOTM
microinstruction, in conjunction with the jump table,
implements the fixed priority scheme used by the bus
arbiter (see Table 2-6 and Figure 2-42b). Recall,

2-44

0 GOTO ST1
1
2 GOTO ST1
3
4 GOTO ST1
5 \
6 GOTO STt
7 ST1
/ MICROPROGRAM
8 GOTO STH / TO IMPLEMENT
9 STATE 1
A GOTO ST1
B
C GOTO ST1 GOTO STATE 0
D
E GOTO ST1
F GOTOTM (STATE 0)
Figure 2-45a. Locations Containing Branch Addresses to State 1 Microprogram
0
1 GOTO ST2
2
3
4
5 GOTO ST2
6 \
7 ST2
MICROPROGRAM
8 / TO IMPLEMENT
9 GOTO ST2 STATE 2
A
B
o] GOTO STATE 0
D GOTO ST2
E
F GOTOTM (STATE 0)

Figure 2-45b. Locations Containing Branch Addresses to State 2 Microprogram

2-45

STATES 0 l 1

CLK 1 1 1 ! 1 1 ! 1
BR3
| |
s&s | |
BBYS

Figure 2-46. Timing for BR3-BG3 Cycle

Y

STATE 0

(STATE 1)

(STATE 1A)

(STATE 1B)

Figure 2-47. Program Flow for State 1 Microprogram

2-46

BRO=1
+1: BR3=0
+2: (BR3=1) * (BR2=0) * (BBYS=1)
+3: (BR3=1) * (BR2=1) * (BR1=0) * (BBYS=1)
: (BR3=1) * (BR2=1) * (BBYS=1)
* (BR1=1) * (BR0=0) * (BBYS=1)

P +1 (BR3=1) * (BR2=1) * (BR1=1) * (BRO=1)

Figure 2-48. State Diagram for Bus Arbiter

DEVICE

DEFINE

BEGIN

STATE1:

STATE1A:

STATE1B:

(PL141)

BBYS=CC
_B_FE%:TO
BG3=FE#H;

.ORG 20#H

BG3, WHILE (BBYS) WAIT ELSE GOTO PL (STATE 1A);
*STAY IN STATE 1 UNTIL BBYS GOES LOW”
“ BRING BG3 LOW."

BG3, WHILE (NOT BR3) WAIT ELSE GOTO PL (STATE 18);
“STAY IN STATE 1A UNTIL BR3 GOES HIGH "
. “ KEEP BG3 LOW "

IDLE, WHILE (NOT BBYS) WAIT ELSE GOTO PL (STATE 0);
“ STAY IN STATE 1B UNTIL BBYS GOES HIGH *
“BRING BG3 HIGH "

Figure 2-49. Microprogram for State 1

2-47

DEVICE (PL141)
DEFINE BR3 = T0
BR2 = T1
BRI = T2
BRO = T3
BBYS = CC
FAL = EQ
BG3 = FE#H
BG2 = FD#H
BG1 = FB#H
BGO = F7#H
IDLE = FF#H;
BEGIN
.ORG 0#H * JUMP TABLE "
LOCO :

LoCc2:

LOC4 :
LOCS :
LOC6 :
LOC7 :
LOCS8 :
LOC9 :
LOCA:

LOCC :
LOCD :
LOCE :

ORG F#H

BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1); *
LOC1: BG2, IF (NOT FAIL) THEN GOTO PL (STATE 2) ; *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *
LOC3: BG1, IF (NOT FAIL) THEN GOTO PL (STATE 3); *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *
BG2, IF (NOT FAIL) THEN GOTO PL (STATE 2) ; *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *
BGO, IF (NOT FAIL) THEN GOTO PL (STATE 4); *“JUMP TABLE "
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1); *
BG2, IF (NOT FAIL) THEN GOTO PL (STATE 2) ; *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *
LOCB: BGT, IF (NOT FAIL) THEN GOTO PL (STATE 3); *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *
BG2, IF (NOT FAIL) THEN GOTO PL (STATE 2) ; *
BG3, IF (NOT FAIL) THEN GOTO PL (STATE 1) ; *

- 2 A
B

—_ eh s b -
2

STATEO : IDLE, IF (BBYS) THEN GOTO TM (F#H) :

* MICROPROGRAM FOR STATE 0~

“ SAMPLE BUS REQUEST LINES AND VECTOR TO APPROPRIATE STATE "

Figure 2-50. Microprogram for Bus Arbiter

however, that by changing the addresses in the jump
table, the priority imposed on the bus request lines
canbe altered. We exploit this fact in the design of the
VME bus arbiter.

The four priority tables for the VME bus arbiter are
shown in Figure 2-56. Each time the arbiter goes
through an arbitration cycle it uses each of these
tables in succession. As we discovered above, a
priority table is implemented by a jump table working
inconjunction witha GOTOTM microinstruction. Since
we now have four priority tables, we need four sepa-
rate jump tables.

Figure 2-57 shows an overview of a microprogram
that implements the VME bus arbiter (also see Figure

2-58). As shown, there are four jump tables, one for
each priority. table. In addition, since each one of
these jump tables needs to be in a separate region of
program memory, we have four separate GOTOTM
microinstructions.

The microinstructions for States 1—4 are duplicated
four times, the reason being that the last WAIT
microinstruction in each of these programs must be
modified to point to a new State 0 so as to switchto a
new priority table. However, the fundamental func-
tions of each of these microprograms remain the
same, namely, to implement the protocol for the BR,
BG and BBYS lines for a selected request level.

Recall, now, that the bus arbiter of Example 3 re-

2-48

* STATE 1 MICROPROGRAM "

STATE1: BG3, WHILE (BBYS) WAIT ELSE GOTO PL (STATE1A) ;* STAY IN STATE 1 UNTIL BBYS GOES LOW "
o o “ BRING BG3 LOW * -
STATE1A: BGS3, WHILE (NOT BR3) WAIT ELSE GOTO PL (STATE1B) ;" STAY IN STATE 1A UNTIL BR3 GOES HIGH "
_ “ KEEP BG3 LOW " L
STATE1B: IDLE , WHILE (NOT BBYS) WAIT ELSE GOTO PL (STATEO) ; * STAY IN STATE 1B UNTIL BBYS GOES HIGH "
“ BRING BG3 HIGH

“ STATE 2 MICROPROGRAM ”
STATE2: BG2, WHILE (BBYS) WAIT ELSE GOTO PL (STATE2A) : “ WAIT FOR BBYS TO GO LOW; ASSERT BG2 "

STATE2A: BG2, WHILE (NOT BR2) WAIT ELSE GOTO PL (STATE2B) ; “WAIT FOR BR2 TO GO HIGH; ASSERT BG2 "

STATE2B: IDLE , WHILE (NOT BBYS) WAIT ELSE GOTO PL (STATEO) ; “ WAIT FOR BBYS TO GO HIGH; BRING BG2 HIGH *

“ STATE 3 MICROPROGRAM "
STATE3: BG1, WHILE (BBYS) WAIT ELSE GOTO PL (STATE3A) ; “ WAIT FOR BBYS TO GO LOW; ASSERT BG1"

STATE3A: BG1, WHILE (NOT BR1) WAIT ELSE GOTO PL (STATE3B) ; “ WAIT FOR BR1 TO GO HIGH; ASSERT BG1 "

STATE3B: IDLE , WHILE (NOT BBYS)WAIT ELSE GOTO PL (STATEO) ; “ WAIT FOR BBYS TO GO HIGH; BRING BG1 HIGH "

“ STATE 4 MICROPROGRAM "
 STATE4: BGO, WHILE (BBYS) WAIT ELSE GOTO PL (STATE4A) ; “ WAIT FOR BBYS TO GO LOW; ASSERT BGO”

STATE4A: BGO, WHILE (NOT BRO) WAIT ELSE GOTO PL (STATE4B) ; “ WAIT FOR BRO TO GO HIGH; ASSERT BGO ”

STATE4B: IDLE , WHILE (NOT BBYS) WAIT ELSE GOTO PL (STATEO) ; “ WAIT FOR BBYS TO GO HIGH; ASSERT BGO HIGH
“RETURN TO STATEOQ”

.ORG 3F#H

PON : IDLE , WHILE (NOT BBYS) WAIT ELSE GOTO PL (STATEO) ; “ WAIT UNTIL BBYS GOES HIGH ”
“ BEFORE STARTING MICROPROGRAM ”

Figure 2-50 (Continued). Microprogram for Bus Arbiter

quired 28 memory locations as allocated inthe table the four bus request lines. However, this implies that
below: we can have only one jump table and that it must be
Jump Table 15 located in the first 15 locations of program memory.

How, then, can we implement four jump tables?
State 0 1

State 1-State 1B
State 2-State 2B
State 3-State 3B
State 4-State 4B
Therefore, to implement the VME bus arbiter, we

" Figure 2-59 shows acircuit diagram of the Am29PL 142
in which two of the outputs are coupled back into the
TEST inputs. These two outputs are used to locate
the four jump tables within the first 64 locations of the
Am29PL142.

W W w w

To see how this works, look at Figures 2-60 and 2-61.

need 112 program locations since we are essentially A§ st?ov:n, \tl_ve modify the dQUKPLéI tﬁe(l)d? ofS‘tI:e
duplicating the microprogramof Example 3 fourtimes. 8“:’0'"5 ruct: anf cgrrespon ;?g tot t?]e' ()—t zle
However, the Am29PL141 has only 64 program loca- (4) so as to introduce an offset to the jump table

. : location. For example, if the microprogram branches
tions. Consequently, we will use the Am23PL 142 for L .
this example given its 128 program locations. to the GOTOTM microinstruction located at 2F (la-

belled State 0(3)), it remains there if the low-order four
Let'sreview howthe GOTOTM microinstructionworks. TEST inputs are all high. Then, itanyof the fourTEST
As described in Example 3, the TEST inputs areused ~ 'Puls 9o low, a branch is taken to the appropriate
as anindex into ajumplabfe. Right now we are using location within the range 20-2E, the locations of the
the four low-order TEST inputs that are connectedto 1UMP table for priority 3.

2-49

191qay Ajopid Bupejoy Joj sejqel Alolid @84y "25-2 einbld

4 €

L c

€ 3

ALlHOIHd ndo
€ldd

1 €
€ z
z 1
ALlHOIHd Ndo
2iad
tHg €
cdg (4
edd b
3NI1 1S3N034 sna ndo

€
c
3

€

4

b
All”HOIHd ndo
Hdd

Ayiolid paxid yum sng Bunsenbay sndo 88yl Jo} weibeiq Bujwi] "1s-g enbig

[-

[B I

LI

(endo)

L
, I
1

(2nd2)

I _ (1nd2)

(endo)

(end2)

(1nd9)

3ivdligdy

sAgd

o8

zo8

¢o8

L
28

eua

A0

2-50

Kuiond Buneloy yum sng Bupsenbay sndo @81yl o} welbeiqg Bujwi) -gs-g einbig

S$S300Hd NOILYHLIgHY IHL NI @3SN 34V LYHL
€S- 34NOId WOYHH S318VL ALIHOIYd 3HL INISIHdIH ISTHL .

L L] L 3lvdligyy

«(114d) +(€ 14d) «(2 14d) (1 14d)
L] L L _ sgg
] (endd) 1og
[] (end0) zog
l (tndo) eog
l [(endd) 1ug
| | (endd) zug
[1 (1ndo) eug

T T T T T 1 T 1

T 1T T T 1 1 W19

2-51

¢ ajdwex3 uj J8)iqly sng 10} weiboldodly jo 8INdNIIS PasuUapuo "55-g ainbi4

. (03LYLS) 1d 010D 38713 LIVM (SAEE LON) ITHM ‘370l . “F'l
NOILONYLSNIOHOIN LIYM 3HL 40 3SNV10 313 IHL SINISIHIIH INFWILVLS SIHL

031VLS OLOD _A|||

¥-1 S31VLS HO4
NWYHO0ddOdOIN

<«———{ W10109:03LViS

37av.L danre

¢ e|dwex3 uj Jejiqly sng Joj weiboidooly Jo 8InonAIS “ps-g ainbig -

031VISOl0D |€—

¥ 31V1S "Ood
WYHOO0HdOHOIN

031VISOIOD |€——

} 31V1S "HO4
WYHO0HdOHOIN

o

<«—— W10L0D:03LVIS

37avL dnnre

2-52

(@]
T
c

1
2
3
4
PRI 1
CPU PRIORITY
1 1
2 2
3 3
4 4
PRI 3
CPU PRIORITY
1 3
2 4
3 1
4 2

BUS REQUEST LINE

BR3
BR2
BR1
BRO
PRI 2
CPU PRIORITY
1 2
2 3
3 4
4 1
PRI 4
CPU PRIORITY
1 4
2 1
3 2
4 3

Figure 2-56 Priority Tables for VME Bus Arbiter

Figure 2-62 shows the state transition tables cor-
responding to each one of the priority tables. Based
on the same procedure described in Example 3,
these tables are used to fill in the branch addresses
forevery locationinthe jumptables (see Figure 2-63).

Incontrastto the Am29PL141,the Am29PL142 clocks
the TEST inputs into a TEST register. As aresult, a
microinstructionusingthe TEST inputs operates upon
the value of the TEST inputs that existed one clock
cycle earlier.

Let's illustrate the effects of this 1-clock delay by an
example. The intent of the microprogramin Figure 2-
65 is to load the counter (CREG) with the values 1, 2
and 3 in succession (also see Figure 2-64). However,
as shown in the timing diagram of Figure 2-66, the
CREG remains zero because of the 1-clock delay.
The microprogram in Figure 2-67 mitigates this effect
by having the microinstructions preceding the LDTM
microinstructions present the desired values at the
TEST inputs (see Figure 2-68).

Taking this 1-clock delay into consideration, we now
see that the modifications of the GOTOTM microin-
structions in Figure 2-60 are insufficient to implement
the four jump tables. In fact, executing any one of
these microinstructions causes a branch to the jump

table for priority 1. To correct this, we also need to
modify the microinstructions shown in Figure 2-65,
since these execute one clock period before the
GOTOTM microinstructions.

We now have successfully written a microprogram to
implementthe VME bus arbiter. In looking over Figure
2-57, however, it seems redundant to duplicate the
microprogram for States 1—4 (from Example 3) four
times. After all, functionally, each microprogram
behaves identically. In fact, the only reason for the
duplication is to provide a means to branch to a new
jump table.

Figure 2-70 presents an overview of an alternate
implementation of the VME bus arbiter. As shown,
the microprogram for States 1-4 now is made into a
microsubroutine, thus eliminating the need for dupli-
cation. With this structure, executing a particular
CALL TM microinstruction causes a branch to the
proper jump table (see Figure 2-71). Then, whenthe
subsequent RET microinstruction is executed (see
Figure 2-72), control returns to the statement follow-
ing this CALL TM microinstruction. A new jump table
then is selected by executing the next CALL T™M
microinstruction. Finally, notice that the jump tables
in Figure 2-63 are modified to fit this new structure
(see Figure 2-73).

2-53

19)1quy sng INA 10} weiboidoojy o aInjonIlS pasuspuny’Ls-g nbid

W y-)t ¥ 14d "HO4
(1) 03LVY1S 010D S3LV1S HO4 < I1gvl A|'._ W10L10D () 03LVLS
WVHHOHJOHOIN dwnre
(e)v-(e) € 1dd Ho4
(#) 031Y1S OLOD SJLVISHO4 |« 31avl 1 WLOLOD :(€) 03LVLS
SWYHDOHJOHOIN dnnr
@+v-@1 2 1ud HO4 v
(€) 0 31V1S OLOD SALVIS HO4 |« 37avl A||||_ WLOL10D :(2) 03LVLS
SWYHOOHJOHOIN dnnr
My-e } Idd HO4 - :
(2) 031v1S 010D SALYIS HO4 [« 37avl A|_ WLOL109D :(H) 03LvLS
SWYHOOHJOHOIN dnne

2-54

FORMAT
STATE 0 (N)

STATE 1 (N)
STATE 2 (N)
STATE 3 (N)

STATE 4 (N)

INTERPRETATION

WHEREN=1-4

STATE 0'USING PRIORITY TABLE N
STATE 1 USING PRIORITY TABLE N
STATE 2 USING PRIORITY TABLE N
STATE 3 USING PRIORITY TABLE N

STATE 4 USING PRIORITY TABLE N

Figure 2-58. Nomenclature Used in Figure 2-57

CLK

BR3
BR2
BR1
BRO

Am29PL142
27
RESET »—— RES
- 26
BBYS »————— CC
25
)-—————T T0 PO
.23 n P1
)—22 T2 P2
T3 P3
I P4
17 P5
H— e

Il

Figure 2-59. Am29PL142-Based VME Bus Arbiter

BG3
BG2
BG1
BGO

2-55

DEFINE PRI 1 = OF #H
PRI 2 = 1F #H
PRI 3 = 2F #H
PRI 4 = 3F #H;

.ORG F #H
STATEO (1) : PRI 1, IF (BBYS) THEN GOTO TM (3F #H);

.ORG 1F #H
STATEO (2) : PRI 2, IF (BBYS) THEN GOTO TM (3F #H);

.ORG 2F #H .
STATEO (3) : PRI 3, IF (BBYS) THEN GOTO TM (3F #H);

.ORG 3F #H :
STATEO (4) : PRI 4, IF (BBYS) THEN GOTO TM (3F #H);

Figure 2-60. Modification of GOTOTM Microinstructions to Implement Four Jump Tables

0
JUMP TABLE
FOR PRIORITY
TABLE 1
E
STATEO (1) F GOTOTM
10
JUMP TABLE
FOR PRIORTY
TABLE 2
1E -
STATEO (2) 1F |- GOTOTM
20
JUMP TABLE
FOR PRIORTY
TABLE 3
2E
STATEO (3) 2F GOTOTM
30
JUMP TABLE
FOR PRIORTY
TABLE 4
3E
STATEO (4) 3F GOTOTM

Figure 2-61. Location of Jump Tables within Program Address Space

2-56

a|qel Aoid yoeg Joj sa|qe] uopisuel) slels "29-z a.nbiy

"31V1S LX3N JHL
30 NOILYINOTYO JHL 3LYLITIOVS OL NMOHS SV 3HY SNNNTOO €48 - 048 JHL 'HIBWNN SIHL LV JAIHHY OL €48 2ug |ug obg
30N3ND3S IHL NI GIONVHHYIH 38 LSNIW SNWNTOO 48 - 048 JHL 'SINNI LS3L JHL 1V INITYAINO3 X3H THL SNIVINOD NWNT0D SIHL

0 4 ' ! ' ! 0 4 ! !
} 3 b ' b 0 v L ' _
v L ' ' 0 ' € g b b
v 9 } ' 0 0 € £ b '
€ g ' 0 b b 2 a I 0
£ € ' 0 0 ' 2 6 r 0
£ v ' 0 ' 0 2 S b 0
€ 2 ! 0 0 0 2 ' ' 0
2 a 0 b ' ' ' 3 0 L
2 6 0 0 ' ' ' 2 0 0
2 S 0 ' 0 b b v 0 _
2 ' 0 0 0 b b 8 0 0
2 ol 0 b ' 0 ' 9 0 !
2 8 0 0 ' 0 ' v 0 0
2 ¥ 0 ' 0 0 b 2 0 !
2 0 0 0 0 0 ' 0 0 0

VIS IX3N INdNIISIL® 2dd tdg odg £ug JIYISIX3N INdNIISIL® €dHg 248

-AIND3 X3H -AIND3 X3H

‘310N .

O -~ O v

OO+~ ™ O O v+ v+

oo~ -

O 00O+ v v

¢ ldd L 1dd

2-57

PRI 4

PRI 3

HEX EQUIV*
BRO @ TESTINPUT NEXT STATE

HEX EQUIV*
@ TEST INPUT NEXT STATE

BR3

BR1

BR1

BRO

0

0

Figure 2-62. (Continued)

2-58

LABEL LOC BRANCH ADDRESS LABEL LOC BRANCH ADDRESS
0 STATE1 (1) 20 STATE3(3)
1 STATE 2 (1) 21 STATE 3 (3)
2 STATE 1 (1) 22 STATE 3 (3)
3 STATE 3 (1) 23 STATE 3 (3)
4 STATE 1 (1) 24 STATE 4 (3)
5 STATE 2 (1) 25 STATE 4 (3)
6 STATE 1 (1) PRI 1 26 STATE 4 (3) PRI 3
7 STATE4 (1) & Jump 27 STATE 4 (3) JUMP
8 STATE 1 (1) TABLE 28 STATE 3 (3) TABLE
9 STATE 2 (1) 29 STATE 3 (3)
A STATE 1 (1) 2A STATE 3 (3)
B STATE 3 (1) 2B STATE 3 (3)
c STATE 1 (1) 2c STATE 1 (3)
D STATE 2 (1) 2D STATE 2 (3)
E STATE 1 (1) 2E STATE 1 (3)
STATEO(1) F * 3 STATEO (3) 2F e J
10 STATE2(2) ™ 30 STATE4 (4)
11 STATE 2 (2) 31 STATE 4 (4)
12 STATE 3 (2) 32 STATE 4 (4)
13 STATE 3 (2) 33 STATE 4 (4)
14 STATE 2 (2) 34 STATE 4 (4)
15 STATE 2 (2) 35 STATE 4 (4)
16 STATE 4 (2) 36 STATE 4 (4)
17 STATE4(2) L f li'mi 37 STATE4(4) | JPS" 4
18 STATE 2 (2) i 38 STATE 1 (4)] MP
19 STATE 2 (2) LE 39 STATE 2 (4) ABLE
1A STATE 3 (2) 3A STATE 1 (4)
1B STATE 3 (2) 38 STATE 3 (4)
1c STATE 2 (2) ac STATE 1 (4)
1D STATE 2 (2) 3D STATE 2 (4)
1E STATE 1 (2) 3E STATE 1 (4)
STATEO (2) 1F .- | STATEO(4) 3F pen |
. CONTAINS MICROINSTRUCTION: PRI 1+ , IF (BBYS) THEN GOTOTM (3F #H)
** CONTAINS MICROINSTRUGTION: PRI 2 , IF (BBYS) THEN GOTOTM (3F #H)
*** CONTAINS MICROINSTRUCTION: PRI 3 , IF (BBYS) THEN GOTOTM (3F #H)
*+x+ CONTAINS MICROINSTRUCTION: PRI 4+ , IF (BBYS) THEN GOTOTM (3F #H)

* THESE ARE OUTPUT FIELD DEFINITIONS

PRI1= F#H
PRI 2 =1F #H

PRI 3 = 2F #H
PRI 4 = 3F #H

Figure 2-63. Jump 'fable Contents for Each Priority Table

This alternative implementation of the VME bus ar-
biter is more compact than the previous implementa-
tion, but only at the expense of lengthening the
arbitration time. With the first implementation, the
arbitration process needed only one clock cycle. In
contrast, the second implementation introduces two
additional clock delays, one at the execution of the
RET microinstruction, and the other at the execution
of the microinstruction following a CALL TM microin-
struction.

2.2.5 Example 5: Frame Store

So far we have used the Am29PL100 to implement a
burst counter, a memory controller and two bus
arbiters. In addition to these applications, we also can
use the Am29PL142 to implement the timing and

control logic of a frame store, which is used to display
grey-scale images on a CRT monitor. A frame store
consists of these basic elements (see Figures 2-74
and 2-75):

« Buffer memory. The buffer memory holds the
pixel values corresponding to each one of the
pixels displayed on the monitor. In our design,
each pixel is represented by a byte. As aresult,
images with 256 shades of grey canbe displayed.
Also, since our display is organized as 512
pixels x 512 pixels, the memory is 256 Kbytes.

The buffer memory is dual-ported, with one port
dedicated to the CPU and the other to the
display logic. The CPU writes pixel values into
the buffer memory, while the display logic reads
them out for display.

2-59

69-z 8inbi4 uj wesboidosoy 1o} weibelq Buiwi] “99-z 84nbiy

(934 aNM3dId NI “31)

- ONILNIIXI ATLNIHHND
S 14 € 4 3 9 S 14 € 4 3 # INJW31VLS

EL 1)

0 >

X=X

/ »
0 X 2 X 0 X_+t X o0 X € X 0o Xz X o X+ X 0 X u:sobisal
AN

XX X T XX X X T X E X T X e X e XX sunawsn

I L _‘ 1 I I i 1 I I | Nale)

sinduj 1s9 buija0]9 Jo 108}33 jo ejdwexd 1sil4 "69-2 @inbid4

{(1HV1S) 1d OLOD N3HL (SSvd) d1 ‘H# 0
‘(H# €) WL VO N3HL (SSvd) di ‘H# €
‘LNOD ‘H# 0
‘(H# €) WL QVO1N3HL (SSvd) dI ‘H# 2
{LNOD ‘H# 0

‘(H# €) WL QVO1 NIHL «(SSVd) dI ‘H# | 11HV1S

NOILONYLSNIOHOIN 13avi # INJWILVLS

- N M T 0 O

£9-Z PUE §9-Z senbid U pesn ¥Nd1IQ "v9-Z 8inbid

4494 <— 10

e

2-60

19-Z 8inbi4 uj weiboidoioly Jo} weibejq Buiwi] "gg-g ainbig

9 s v £ 2 ! 9 S ¥ € 2 I DNILNO3X3 ATLNIHHND

INAN3LVLS

€ X 2 X X € X 2 X I X EIT)
X 0o X e XTo Xz X o X v X o Xe X 0o Xz X o 4/x L X HILSID3IH 1s3L
X X0 XTe XTo Xt X X XTo X 0 2 v 0 SLNdNI LS3L
1 I 1 | 1 | I I I] I I [Nale)

sinduj 3sa] 6upjooln o sy09}y3 Buimoys welboidooy puodasg *2g-Z ainbid4

{(LHVLS) 1d 010D N3HL (SSVd) dI ‘H# +
(H# €) WL QYO NaHL (SSvd) 41 ‘H# 0
{INOO ‘H# €
(H# €) WL aVOTN3HL (SSvd) I ‘H# 0
{LNOD ‘H# 2

(H# €) WL QVOTN3HL (SSvd) 41 ‘H# 0 11HY1S

NOILONYLSNIOHOIN 13avi # INIJW3ILVLS

- N M T W0 ©

2-61

LABEL OUTPUT MICROINSTRUCTION

STATE1B(1): PRI2%, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (2)};
STATE2B(1): PRI2%, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (2)};
STATE3B(1): PRI2%, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (2)];
STATE4B(1): PRI2%, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (2)};
STATE1B(2): PRI3, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (3)];
STATE2B(2): PRI3", WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (3)];
STATE3B(2): PRI3*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (3)];
STATE4B(2): = PRI3*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (3)];
STATE1B(3): PRI4*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (4)];
STATE2B(3): PRI4*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (4)];
STATE3B(3): = PRI4*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (4)];
STATE4B(3): PRI4*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (4)];
STATE1B(4): PRI1*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (1)];
STATE2B(4): PRI1*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (1)];
STATE3B(4): PRI1%, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (1)];
STATE4B (4): PRI1*, WHILE (NOT BBYS) WAIT ELSE GOTO PL [STATE 0 (1)];

* PRI1= F#H
PRI 2 =1F #H
PRI 3 = 2F #H
PRI 4 = 3F #H

Figure 2-69. Modifications to VME Arbiter Microprogram to Mitigate Effect of Clocking Test Inputs

« Display logic. The display logic generates two
fundamental types of signals:

Control signals to the CRT — Starting at the
upper left side of the screen, the electron beam
inthe CRT moves horizontally, from left to right,
todisplay each row of pixel values, and vertically,
from top to bottom, until all rows are displayed.

As the electron beam moves from left to right,
eachpixelisdisplayed. Whenall512pixels have
been displayed, the electron beam is at the right
hand side of the screen. Atthis point, the display
logic issues a horizontal sync pulse (HSYNC)
that causes the electron beamto return to the left
side of the screen and down one row.

After all 512 rows of pixels have been displayed,
the electron beam is at the bottom right of the
display. The display logic then generates a
vertical sync pulse (VSYNC) that causes the
electron beam to return to the upper left side of
the screen to repeat the cycle.

Memory request signal to memory controller —
Asthe electron beam sweeps across the screen,

successive pixel values must be available for
display. Consequently, the display logic issues
amemory request signalto the memory controlier
to obtain the proper pixel value at the right time.

* Memory controller. The CPU writes pixel values
into the buffer memory, whichthen are displayed
undercontrol of the display logic. Therefore, the
memory controller must arbitrate between CPU
requests and display logic memory requests
and then generate the proper sequence of
memory control signals.

2.2.5.1 Implementing the Buffer Memory

As noted above, the buffer memory is dual-ported to
allow access by both the CPU and display. in our
design, we implement this memory using a special
type of dynamic memory chip called a Video Ram
(VRAM).

As shown in Figure 2-76, the VRAM consists of four
64-Kbit planes, each plane organized as 256 rows
and 256 columns. In addition, each plane has a 256-
bit shift register that can be loaded with the contents

2-62

NHN13Y *1IX3

I81iqly sng A 4o} weiboidosdjy ajeulaljy Jo MaIAIBAQ “02-Z ainbi4

SLINdNI LS3L NO AV13a ¥O01J INO 4O JHVO S3HVL 1+
¢/-e3”NOId 33s =+
L-23dNoid433s +

11X3 0109

| »31VIS HOd
_INVHOOHJOHOIW

1 31V1S 0109 .

1lIX3 0109 |«
¥

x

L 31V1S HO4
WYHO0HdOHIIN

\ v 31VISOL0D |-

¥ ALlHOIdd 104
378vL dwnr

¥ 31V.1S 010D .

4/ | 31VISOL0D |-

L ALIHOIHd HO4 31av.L dWNr

\+ Hdd OLOD

W1 T7Iv0

.+ INOD

W1 1iv0

1+ INOD

WLTIVD

.+ INOD

WLTIVO ‘idd

+d0L03713s
3TavLl dnnr

A

2-63

PR1: PRH, IF (BBYS) THEN CALL TM (3F #H); “GOTO PRI 1 JUMP TABLE”
PRI2, CONT; “ASSERT PRI 2 ONE CLOCK CYCLE EARLY"
PRI2, IF (BBYS) THEN CALL TM (3F #H); “GOTO PRI 2 JUMP TABLE”
PRI3, CONT; “ASSERT PRI 3 ONE CLOCK CYCLE EARLY”
PRI3, IF (BBYS) THEN CALL TM (3F #H); “GOTO PRI 3 JUMP TABLE”
PRI4, CONT;
PRI4, IF (BBYS) THEN CALL TM (3F #H); “GOTO PRI 4 JUMP TABLE”
PRH, IF (EQ) THEN GOTO PL (PR 1);

Figure 2-71. Microprogram for Jump Table Selector

STATE1B: IDLE, WHILE (NOT BBYS) WAIT ELSE GOTO PL (EXIT);
“MODIFICATION OF STATE 1 MICROPROGRAM"

STATE2B: IDLE, WHILE (NOT BBYS) WAIT ELSE GOTO PL (EXIT);
“MODIFICATION OF STATE 2 MICROPROGRAM"

STATES3B: IDLE, WHILE (NOT BBYS) WAIT ELSE GOTO PL (EXIT);
“MODIFICATION OF STATE 3 MICROPROGRAM"

STATE4B: IDLE, WHILE (NOT BBYS) WAIT ELSE GOTO PL (EXIT);
“MODIFICATION OF STATE 4 MICROPROGRAM"

EXIT: IDLE, IF (BBYS) THEN RET; “BRANCH TO JUMP TABLE"
“SELECTOR MICROPROGRAM"

Figure 2-72. Modification of States 1-4 Microprogram to Use Microsubroutine Structure

STATE 1 (1) CHANGES TO STATE 1
STATE 1 (2) CHANGES TO STATE 1
STATE 1 (3) CHANGES TO STATE 1
STATE 1 (3) CHANGES TO STATE 1
STATE 2 (1) CHANGES TO STATE 2
STATE 2 (2) CHANGES TO STATE 2
STATE 2 (3) CHANGES TO STATE 2
STATE 2 (4) CHANGES TO STATE 2
STATE 3 (1) CHANGES TO STATE 3
STATE 3 (2) CHANGES TO STATE 3
STATE 3 (3) CHANGES TO STATE'3
STATE 3 (4) CHANGES TO STATE 3
STATE 4 (1) CHANGES TO STATE 4
STATE 4 (2) CHANGES TO STATE 4
STATE 4 (3) CHANGES TO STATE 4
STATE 4 (4) CHANGES TO STATE 4

Figure 2-73. Modification of Jump Tables in Figure 2-63

2-64

I(— 512 PIXELS —)'

512 PIXELS

Figure 2-74. Pixel Organization of Display

BUFFER MEMORY

CPU ————— PORTA

256 K BYTES

CONTROL

PORT B DISPLAY

CPU REQUEST »———

DISP REQUEST »———]

MEMORY CONTROLLER

——> HSYNC
—> VSYNC

—> DISP REQUEST

DISPLAY LOGIC

Figure 2-75. High-Level Block Diagram of Frame Store

of all 256 columns of a selected row in a single
operation.

Figure 2-77 shows a 64-Kbyte memory system that
uses two VRAMs. Aside from the shift register, the
only difference between this memory system and the
one usedin Example 2is the inclusion of an additional
memory control signal called Transfer (TR).

TR is used to select one of two modes of operations.
If TRis high during a memory cycle (see Figure 2-78),
the random access mode is selected, and the VRAM
behaves identically to the random-access dynamic
memory in Example 2. Alternatively, if TR is low

during a memory cycle (see Figure 2-79), the serial
access mode is selected and the shift register is
loaded with all the columns specified by the row
address when RAS is brought low.

Because of the serial nature of pixel display, the
VRAMis especially well suited to implementing display
buffer memories. In this application, the CPU uses
the random access mode and the display uses the
serial access mode. Withthisarrangement, contention
for memory access is minimal since the shift register
is loaded only once every 256 shift pulses.

2-65

’(—— 256 COLUMNS —)I

coL coL
0 255
A ROWO
256 ROWS VRAM
Yy ROW 255
© b os6
1
256 BIT SHIFTREG. Q |—\—
OE

T

Figure 2-76. Organization of One Plane of VRAM

In a dynamic memory, data is represented by the
absence or presence of an electron charge on a
capacitor. Because of leakage paths, however, the
charge on a capacitor slowly decays. To circumvent
this problem, it is necessary to perform a refresh
operation on the memory.

A refresh operation is performed by periodically
reading each row inthe dynamic memory. As aresult,
any capacitors that were initially charged are restored
totheirfullvalue. Forthe VRAM described here, each
row must be refreshed once every 4 milliseconds to
retain data.

Figure 2-80 shows a timing diagram for.a refresh
operation. As shown, refresh is initiated by bringing
CAS lowbefore RAS. The row addressis provided by
an internal counter within the memory chip that is
specifically used for this purpose. Atthe end of each
refresh operation, the counter is incremented ‘in
preparation for a'subsequent cycle.

2.2.5.2 Implementing the Display Logic

In our design, the display is organized as 512 pixels
x 512 pixels, with each pixel represented by a byte.
As aresult, the display bufferis 256 Kbytes, whichcan
be implemented with 8 VRAMs

Figure 2-81 shows the physical relationship between
the VRAMSs and the display. As shown, each quad-
rant of the display needs 2 VRAMs since each VRAM
contributes four bits of each pixel.

To the CPU, the display buffer appears as a contin-
uous block of 256 Kbytes in which pixel values are

stored sequentially in successive buffer locations
(see Figure 2-82). To address an individual pixel
location, CPU address bits A8 and A17 are decoded
to select one of the four pairs of VRAMs (see Figures
2-83 and 2-84). The remaining address bits then
specify the row and column addresses within the
selected VRAM.

Figure 2-85 shows a block diagram of the address
decoding mechanism. Notice that the memory con-
trol signal RAS is common to all VRAMs, but that CAS
is routed to the individually selected VRAM by the
address decoder. This arrangement allows the data
lines to be tied together because CAS, in addition to
strobing the column addresses into the VRAMSs, also
controls the three-state condition of the output data
drivers. Consequently, only the pair of VRAMSs re-
ceiving both RAS and CAS is selected. Forthe other
VRAMs, which receive RAS only, data remains valid.

Sofar, ourdiscussionof thedisplay buffer has centered
on the random access mode of the VRAMs, which is
used by the CPU. However, as described above, the
display usesthe serial access mode. Before describing
this mode more fully, let’s take a look at the display
logic in greater detail.

Figure 2-86 presents a high-level view of the display
logic circuitry and display buffer. As shown, the display
buffer contains a 512-bit shift register that hoids the
pixel values for an entire row in our display.

2-66

SWVHA Buisn waysAg Alowaly a1Ag W9 "LL-Z 9.nbi4

H31S1934 14I1HS OL MOY 40 SINILINOO H3I4SNVHL OL 1S3INO3Y +
SIWVHA 119 ¥ X MP9 OML «

1Nno viva 'T

H37T0HLINOD AHOWIW

i €— G

NILVQ €—
avid «€«—
SY0 €—
SVH <€—
N300 €«—
NIMOH <€—
dNOOd0 <€———]

o] 8 X ©3YH L4IHS 952 <
L o
» 118 8xMP9 —
viva My
svo o
ssayaav s o
81

avay — wa \A@. 30 p—— NaLva vDH_o! NZMOY

8

L

10

M1043s

o
avay
SNA)
svy

N300

SSs3yHaav

viva

2-67

ADDRESS

CAS

READ :
READ
CYCLE

__V__/

12
(———-—-—10—)'

READ 7

WRITE
CYCLE

DATA

MIN MAX
1. ROW ADDRESS SETUP TIME 20
2. ROW ADDRESS HOLD TIME 0
3. COLUMN ADDRESS SETUP TIME 20
4. COLUMN ADDRESS HOLD TIME 0

5. PULSE DURATION RAS LOW 180 10000

6. PULSE DURATION CAS LOW 80 10000
7. READ COMMAND SETUP TIME 20
8. READ COMMAND HOLD TIME 20
9. WRITE COMMAND SETUP TIME 20
10. WRITE COMMAND HOLD TIME 20
11. RAS TO CAS DELAY 80
12. ACCESS TIME FROM CAS 80
13. DATA IN SETUP TIME 20
14. DATA IN HOLD TIME 20
15. TR SETUP TIME ‘ 20
16. TR HOLD TIME ‘ 0

Figure 2-78. VRAM Timing Requirements

2-68

RAS |
CAS
ADDRESS
TR |
READ
MIN MAX
1. ROW ADDRESS SETUP TIME 20
2. ROW ADDRESS HOLD TIME 0
3. TRANSFER SETUP TIME 20
4. TRANSFER HOLD TIME 0
5. READ COMMAND SETUP TIME 20
6. READ COMMAND HOLD TIME 0
Figure 2-79. Memory to Shift Register Timing
3 — >
RAS >l I
1 »
«— 2 —»]
cas] I
—

l«—5s

. CAS LOW TO RAS LOW

. RAS LOW TO CAS HIGH

. PULSE DURATION RAS LOW
. TR SETUP TIME

. TR HOLD TIME

[O R S R

MIN MAX
20
20
180 10000
20

Figure 2-80. Refresh Timing of VRAM

The shift register is loaded 512 times during each
vertical sweep of the electron beam since 512 rows of
pixels must be displayed. As shown in Figures 2-77
and 2-79, the memory controller initiates a shift reg-
ister load cycle in response to the signal XFER. The
display logic generates this signal once every hori-
zontal sweep during the retrace time, the time interval
inwhichthe electron beam returns from the right side
of the display back to the left side.

As described above, the signal HSYNC controls the
horizontal sweep of the electron beam and the signal
VSYNC controls the vertical sweep of the electron

beam. The frequency of HSYNC pulses is called the
horizontal scan rate and the frequency of VSYNC
pulses is called the vertical scan rate.

In our monitor, the horizontal scan rate is 31.5 kHz.
As shown in Figure 2-87, the period of time between
HSYNC pulses is 31.746 microseconds. Of thistime,
27.456 microseconds are devoted to the display of
512 pixels, which gives us a pixel clock frequency of
18.648 MHz. During the active horizontal. display
time, designated by the signal HDISPEN in Figure 2-
87, the display logic gates the pixel clock to create the
clock called SERCLK. This clock is used to clock the

2-69

’(——— 512 PIXELS ———»{

VRAM 00 VRAM 10
o VRAM 01 VRAM 11
UPPER UPPER
LEFT RIGHT
QUADRANT QUADRANT 7
8 BITS
¥
512 PIXELS
VRAM 20 VRAM 30
VRAM 21 VRAM 31
LOWER - LOWER
LEFT 256 ROWS RIGHT
QUADRANT

QUADRANT

}(—— 256 COLUMNS

Figure 2-81. Physical Relationship of VRAMs to Display

ADDRESS
0 I E11 L——) 0 PIXEL VALUE FOR PIXEL 0
—— > 1FFF PIXEL VALUE FOR PIXEL 1FF
——>» 3FFFF PIXEL VALUE FOR PIXEL 3FFFF

DISPLAY PIXEL LOCATIONS

DISPLAY BUFFER

Figure 2-82. Organization of Display Buffer

shift register as shown in Figure 2-86.

Figure 2-88 presents a timing diagram for the vertical
scan. As shown, 512 rows of pixels are displayed
during the period of time labelled VDISPEN..

The timing diagram in Figure 2-89 highlights the
major timing requirements of the display logic. The
top of the diagram shows the relationship between
HSYNC and VSYNC during one vertical scan period.
This interval of time is further broken down into four
major periods labelled A, B, C and D, which is shown
in greater detail in the same diagram. Using the

Am29PL142-based circuit in Figure 2-86, our task
now is to write microprograms to synthesize each of
these periods.

During time Period C, all 512 rows of pixels are
displayed. (see Figures 2-89 through 2-91). In es-
sence, the activity that takes place during the cycle
labelled HSDCYC is repeated 512 times. Therefore,
our first step in writing a microprogram to implement
the timing for Period C .is to write a subprogram to
implement the timing of HSDCYC.

Figure 291 provides detailed timing information for

2-70

||< 512 PIXELS }I
A N
00000 000FF 00100 001FF PIXEL NO
GIVEN IN HEX
VRAM 00 VRAM 10
VRAM 01 VRAM 11
(A8=0) (A8=1)
(A17=0) (A17=0)
UPPER LEFT QUADRANT UPPER RIGHT QUADRANT
1FE00 1FEFF 1FF00 1FFFF
512 PIXELS
20000 200FF 20100 201FF
VRAM 20 VRAM 30
VRAM 21 VRAM 31
(A8=0) (A8=1)
(A17=1) (A17=1)
LOWER LEFT QUADRANT LOWER RIGHT QUADRANT
\ 3FE00 3FEFF 3FF00 3FFFF
Figure 2-83. Relationship of VRAMSs to Display Organization
ADDRESS BITS
171615141312 1110 9 8 7 6 5 4 3 2 1 0
0O X XX XX XXX0XXXXX XX X UPPER LEFT QUADRANT
0 X XX XX XXX1TXXXXXXX X UPPER RIGHT QUADRANT
T XXX XX XXX 0XX XXX XX X LOWER LEFT QUADRANT
T XXX XX XXX 1T XX XXX XX X LOWER RIGHT QUADRANT
\ / 0\ /
V Vv
ROW ADDRESS COLUMN ADDRESS

Figure 2-84. Addressing of VRAMs Versus Pixel Locations

the HSDCYC cycle. This cycle is broken down into
five segments—labelled CO to C4—during which
signal values remain steady. The length of each
segment is defined by the number of pixel clocks that
elapse during each segment. Recall from Figure 2-86
that the pixel clock also clocks the Am29PL142.
Therefore, the number of pixel clocks specifies the
number of microinstruction cycles necessary to
implement a segment.

The microprogram in Figure 2-92 implements the
HSDCYC cycle using the OUTPUT FIELD values
derived in Figure 2-93. Each segment is imple-

mented with the DECPL microinstruction, which has
the advantage of loading the CREG with a new value
duringthe last cycle of its execution. Notice, also, that
segment C3, which requires 512 clocks, is imple-
mented by 4 DECPL microinstructions, each contrib-
uting 128 clock cycles. Having implemented the
HSDCYC cycle, we must repeat this program 512
times to implement Period C fully.

Figure 2-94 presents a microprogram that accom-
plishes this goal. The essential feature of this micro-
program is that microprogram CO is now a microsub-
routine that is called within a loop that executes 128

2-71

Do -D7

ROW ADDRESS COLUMN ADDRESS
BUFFER BUFFER
(A9-A16) (A0-A7)

A0 - A17 /‘Fa){/8
[v

| v 1 [%2]

,|ia 8
6)
CAS EN 8
Y3 Y2 Y1 YO
0O O
VRAM 00
9 CAS D VRAM 01
o RAS
RW
8
7 A
VRAM 10
9 oS b VRAM 11
d RAS
RW
8
71 A
VRAM 20
— CAS D,
d ras VRAM 21
RW
8
—— A
/| VRAM 30
RAS 9 OAS B VRAM 31
RAS o RAS
READ RW

Figure 2-85. Address Decoding of VRAMs

2-72

times (see Statements 1-5). In turn, this loop is
repeated an additional three times (see Statements
6-20) so that HSDCYC is executed 512 times.

Statement 5, the LOOP PL microinstruction, imple-
ments the loop in conjunction with the counter, which
holds the count of the number of iterations left in
executing the loop. However, microprogram CO also
uses the counter. As a result, the contents of the
counter must first be stored on the stack before a call
to microprogram CQ is executed. Then, upon return
from microprogram CO0, the counter is restored from
the stack to allow the LOOP PL microinstruction to
execute properly. Figure 2-95 reviews the operation
of Statements 2—4 as an aide in understanding the
Am29PL142 stack mechanism.

The HSDCYC microprogram is primarily responsible
for implementing the segments in Figure 2-91.
However, the execution of Statements 1-5 in Figure
2-94 also adds cycles that influence the length of
segments CO and C4. For our purposes, therefore,
we assume that while Statement 1 initializes the loop
counter, its OUTPUT FIELD implements the last
cycle of Period B and does not affect the timing
synthesized by our current microprogram.

However, the execution of Statements 2 and 3 imple-
ments the first two cycles of segment CO, and the

execution of Statements 4 and 5 implements the last
two cycles of segment C4. For this reason, we must
reduce the counter values specified inthe statements
labelled CO and LASTC3 in the HSDCYC micropro-
gram (see Figure 2-96).

Let's take a closer look at the transition between
Statements 5 and 6 in Figure 2-94. Statement 6
initializes the loop counterforexecutingthe HSDCYC
microprogram an additional 128 times. However, it
executes only once since itis not part of the loop itself.
As a consequence, the first HSDCYC cycle gen-
erated by the loop is longer by one clock cycle than
the remaining 127 cycles. Clearly, this is not accep-
table.

The microprogram in Figure 2-97 corrects this prob-
lem and properly generates 512 HSDCYC cycles.
Like its predecessor, it consists of four loops, each
loop generating 128 cycles of HSDCYC. But now the
loop is implemented using the DEC and GOTOPL
microinstructions rather than the LOOPPL microin-
struction.

Upon entry to the microprogram, the counter is zero.
Consequently, the first time Statement 1 executes,
the counter is decremented to count 127, whichis the
desired loop count. When Statement 5 executes, the

VRAM

DISPLAY BUFFER

8 BIT
O/A

> 512 BIT SHIFT REG

= Q

o8 VIDEO

SERCLK

SROE

v
]

HDISPEN
PIXEL CLK
(18.648 MHz)
PO
cc P1
T0 P2
T P3
T2 P4
T3 P5
T4
15
v} T6
RESET /RES

—LD—V SERCLK

» HSYNC

» VSYNC

» HDISPEN

» SROE

Am29PL142

» SCANRQST

Figure 2-86. High-Level Diagram of Display Logic

2-73

state of the counter is tested. If the counter is not
zero, control passes back to Statement 1, which
decrements the counter again. Finally, after 128 rep-
etitions, the counter counts down to zero, and when
Statement 5 executes, control passes to State-
ment 6.

Executing Statements 6-10 duplicates the actions of
Statements 1-5. But now, the transition from State-
ment 5 to Statement 6 is not problematic because
Statement 6 is part of the loop itself and executes
repeatedly. :

Notice, also, that the OUTPUT FIELD of Statement 1
generates the first clock cycle of segment C0. Con-
sequently, Statement CO in the HSDCYC micropro-
gram (see Figure 2-96) must be modified again to
take this into account.

In writing the HSDCYC microsubroutine, we as-
sumed we had a 512-bit shift register that was loaded
once each horizontal scan line with a new set of pixel
values (see Figure 2-86). The actualimplementation
of the display buffer is different, however, because of
the physical structure of the VRAM. As shown in
Figure 2-76, each VRAM has a single 256-bit shift
register. Furthermore, the data in the shift register
can only be shifted out so that we cannot simply
connect 2 VRAMs together to form one 512-bit shift
register.

Figure 2-98 shows the organization of the VRAMs to
implement the display buffer properly (see also Fig-
ures 2-83 and 2-85). As shown, we have four groups
of VRAMs, each group corresponding to a quadrant
of the display.

To display a row in the upper half of the screen, we
must first enable the shift register output of VRAMO00
and VRAMO1 and then create a burst of 256 clock
pulses to shift the pixel data out of the shift register.
Then, to display the right half of the row, we must
enable the shift register output of VRAM10 and
VRAM11 and create another burst of 256 clock
pulses to shift out the rest of the pixels.

The procedure for displaying a row of pixels in the
lower half of the display is similar to that of the upper
half. The only difference is which shift-register out-
puts are enabled (see Figure 2-99).

We can implement this new timing by adding more
control bits to the Am29PL142 and modifying the
HSDCYC microsubroutine (see Figure 2-100). How-
ever, before returningtoHSDCYC, we needtodiscuss
one additional aspect of the display buffer
implementation.

As noted above, all 256 rows of each VRAM must be
refreshed at least once every 2 milliseconds. This
means thatonce every 15.6 microseconds the memory

| 31.746 us 9l
[~ (592)* ~
HSYNC N [L
= e
— 2.22‘105)55 _>{ . 2235,)}15

HDISPEN

HORIZONTAL SCAN RATE

HORIZONTAL SCAN PERIOD

PIXEL CLOCK PERIOD

PIXEL CLOCK FREQ

]

= f HSYNC = 31.5 kHz

27.456 ps
(512)*

= 1/fHSYNC = 31.746 s

_1/fHSYNC 31.746 us _
=535 = ~5; =53.625 ns

=1/53.625 ns = 18.648 MHz

* THIS IS NUMBER OF PIXEL CLOCK PERIODS

Figure 2-87. Horizontal Scan Line Timing During Active Display

2-74

Bujwiy ueog |eojueA “gg-z 8.nbiy

(8387Nd ONASH) SAOIY3d NVOS TVLNOZIHOH 40 HIFGWNN SI SIHL »

SW £99'9k = ONASAS/L = QOIY3d NVOS TVOILHIA

ZH09 = ONASAf = 31vH NVOS TVOILHIA
«(219)

N3dSIaA

(€)
stl 8e2'6

5
<€ sw $5z'91 >
f

< () >
_ st $86°921 ’

+(9)
st 9/t°061 <

a _| ONASA
.(g29)

[
[<-

/ N
sw £99'9} >l

2-75

HSYNC | |

vsywe []) [1.
VDISPEN A —>f—5 ;|< c Z’Z I{ D >]
T B B B B B B
VSYNC _ | |
%VDSPEN
HDISPEN
swe_[1 MM T T 1
vsyne — |
{VDSPEN
HDISPEN
Hsyne [] [[I—L—??—J—l 1 AN
VSYNC n
{VDSPEN ‘ & |
_Hoispen L™ L L

-

HsynG []
" VSYNC
VDISPEN — |
| _HDISPEN

Figure 2-89. Timing Diagram of Display Logic

2-76

N3dSIaA Jo} weibeiq Buwi) papuedxy "06-z enbiy

< SHTOHIS 2iS

_ [LT 1 [] L I LT 1 N3dSIaH

N3dSIaH

AL

A —> l«—— oAoasH
))
L LI L L] L L | L] | [~ onasH
j— S3STINd ONASH 24§ >

_ _ N3dSIaA

~~

)
[§

2-77

(OADQASH) 819A0 Aeidsiq ouAs [ejuoziioH Jo} weibeiq Bujwyy “16-Z 8inbld

26-¢34dNYI4 338 +

£6-23WNOI433S
0 €0 420 10 400 138VI0OHOIN
#OLNO .£01N0 ,20LN0 | .101no | .00LNO 3INIVA LNd1NO
02 21 0z 02 02 310 13XId ON
)
_ (49
NIM10H3S
J))
1 *
304S
)
[¢ | _ LSOUNYOS
| 1y N3dSIaH
(49
-))
e | [oNAsH

\

OAJASH

N

2-78

controller must initiate a refresh operation. Since the
display logic is already generating the timing for
control of the display buffer and CRT, we can once
again modify the HSDCYC microprogramto generate
arefresh request signal (REFRRQST) during a scan
line.

Figure 2-101 presents a timing diagram that shows
the relationship between REFRRQST and the other
control signals generated by HSDCYC. Notice that
REFRRQST is generated four times per scan line
(once every 6.864 microseconds), which is a faster
rate than necessary. We do this to allow enoughtime
for the memory controller to respond to this signal as
it is arbitrating among other requests.

Let's return to the microprogram for implementing
Period C. As noted above, the output enable signals
for the shift registers differ depending upon whether
the displayed pixels are in the upper or the lower half
of the display (see Figure 2-99). At the same time,
however, the other control signals remain the same.

For this reason, we need two microsubroutines, la- -

beled UPPER and LOWER.

Figure 2-102 presents a portion of the microprogram
for Period C. Like its predecessor (see Figure 2-97),
this microprogram also is structured as a series of

four loops, each loop generating 128 HSDCYC cy-
cles. However, in this microprogram, the first two
loops execute a microsubroutine call to UPPER, and
the last two loops execute a microsubroutine call to
LOWER. Notice, also, thatthe values of the OUTPUT
FIELD are different, reflecting the additional control
signals that have been added (see Figure 2-103).

The microprogram for UPPER is presented in Figure
2-104. Notice that segment C3 now is broken down
into eight subsegments as defined in Figure 2-101.
The microprogram for LOWER is similar and differs
only in the OUTPUT FIELD values that control the
shift-register outputs.

We now have completely implemented Period C.
Let’s continue and write microprograms to synthesize
the timing for Periods A, B and D.

As shown in Figure 2-89, Periods 1, B and D are
similar, differing only in their duration and VSYNC
assertion. As a result, we have two fundamental
cycles, called HSCYCA and HSCYCBD, which are
repeated in a manner similar to HSDCYC described
above (see Figures 2-105 and 2-106).

The microprograms to synthesize HSCYCA and
HSCBD are shown in Figure 2-107 and are refer-

DEVICE (PL142)

DEFINE FAIL = TO
OUTCO = 33#H
OUTC1 = 13#H
OuUTC2 = 11#H
OUTC3 = 08 #H
OUTC4 = 11#H;
BEGIN

Co: QUTCO, IF (NOT FAIL) THEN LOAD PL (18 #D);

“ LOAD COUNTER WITH INITIAL COUNT "

OUTCO, WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);

“ GENERATE WAVEFORM FOR CO "

C1: OUTC1, WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);

“ GENERATE WAVEFORM FOR C1”

C2: OUTC2, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);

“ GENERATE WAVEFORM FOR C2 "

C3: OUTC3, WHILE (CREG <> @) WAIT ELSE LOAD PL (7F #H);
OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);

LAST G3:

OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);

“ GENERATE WAVEFORM FOR C3 "

C4: OUTC4, WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);

“ GENERATE WAVE FOR C4 "

Figure 2-92. Microprogram to Synthesize HSDCYC Cycle

2-79

OUTPUT FORMAT

| P5 I P4 | P3 l P2] P1 | PO |
L——) SERCLKEN
L 3 HSYNC
» VSYNC
» HDISPEN
» SROE
» SCANRQST
OUTPUT VALUES HEX EQUIVALENT
outTcO 1 1 0 0 1 1 33
outci o0 1 o 1 1 13
outTc2 0 1 0 0 0 1 11
outTc3 0 o0 1 0 0 0 08
outTc4 o 1 o0 0 0 1 11

Figure 2-93. Output Values for Each Segment of HSDCYC

STATEMENT NO.

LABEL MICROINSTRUCTION COMMENTS

1

o b~ W N

© © N O

-
o

16
17
18
19
20

C: OUTB, LOAD PL (127 #H) ; “ EXECUTE LAST CYCLE OF PERIOD "
“B AND SETUP LOOP COUNT "
REPEAT: OUTCO, PUSHCNTR H “ SAVE LOOP COUNT ON STACK”
OUTCO, CALL PL (CO)* “ EXECUTE HSDCYC ONCE "
OUTC4, POPCNTR H “ RESTORE COUNTER WITH LOOP COUNT;

OUTC4, WHILE (CREG < > @) LOOP TO PL (REPEAT);
“ REPEAT INSTRUCTIONS UNTIL COUNT = ZERO "

OUTCO, LOAD PL (127 #H); N
REPEAT1: OUTCO, PUSHCNTR ;

OUTCO, CALL PL (CO)*

OUTC4, POPCNTR ;

OUTC4, WHILE (CREG < > @) LOOP TO PL (REPEAT1);

EXECUTE
. > HSDCYC
484 TIMES

OUTCO, LOAD PL (127 #H);
REPEATS3: OUTCO, PUSHCNTR ;
OUTCO, CALLPL (CO) ;*
OUTC4, POPCNTR ;
OUTC4, WHILE (CREG < > @) LOOP TO PL (REPEAT 3),

* SEE FIGURE 2-92.

Figure 2-94. Microprogram for Repeating HSDCYC 512 Times

2-80

STATEMENT NO MICROINSTRUCTION

PUSHCNTR
CALL PL (EX)
POPCNTR

EX: RETURN

S 0NN =

INITIAL STATE OF STACK

COUNTER VALUE

STACK AFTER EXECUTING STATEMENT 1
X X X X X X X X X

ADDRESS OF STATEMENT 3

STACK AFTER EXECUTING STATEMENT 2
COUNTER VALUE

COUNTER VALUE

STACK AFTER EXECUTING STATEMENT 4
X X X X X X

STACK AFTER EXECUTING STATEMENT 3

Figure 2-95. Operation of Stack

C0: OUTCO, IF (NOT FAIL) THEN LOAD PL (16 #D);
“ REDUCE COUNT TO 16 TO COMPENSATE "
" FOR CYCLES IN STATEMENTS 2 AND 3 IN FIGURE 76 "
OUTCO, WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);

C1: OUTC1, WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D
C2: OUTC2, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H

)
)
C3: OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H)
OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
LASTC3: OUTC3, WHILE (CREG < > @) WAIT ELSE LOAD PL (16 #D);
“ REDUCE COUNT TO 16 TO COMPENSATE FOR "
“CYCLES IN STATEMENTS 4 AND 5 IN FIGURE 76
“ AND RETURN MICROINSTRUCTION BELOW "

C4: OUTC4, WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);
OUTC4, IF (NOT FAIL) RETURN;
“ ADD RETURN TO CONTINUE EXECUTION AT *
" STATEMENT 4 IN FIGURE 2-94

’
)

Figure 2-96. Modification of HSDCYC Microprogram in Figure 2-92

2-81

enced by these names as well (also see Figure 2-
108).

As shown in Figure 2-109, the timing for Period A is
synthesized by calling HSCYCA within a loop that
executes 6 times (also see Figure 2-88). In a similar
vein, the timing for Period B is synthesized by execut-
ing HSCYCBD four times, and for Period D, by calling
HSCYCBD three times.

Let’s look at the microprogram for Period A in more
detail. The microinstruction in Statement 1 initializes
the loop counter. Notice, however, that this microin-
struction executes once, whenthe loop is firstentered
and the counter is zero. During subsequent iterations
of the loop, Statement 1 contributes execution cycles
to synthesize segment A0 but does not reload the
counter. ‘

The microprogramfor Period A repeats untilthe coun-
ter counts down to zero.Then, when Statement 6
executes, control passes to Statement 8, labelled
EXITA. The major purpose of Statement 8 is to ensure

that during the last iteration of the loop, segment A1
is as long as it is for each of the other iterations. The
microprograms for Periods B and D are similar to
Period A and are not discussed in detail here.

2.2.5.3 Implementing the Memory Controller

The essential function of the memory controller is to
arbitrate among requests from the CPU and display
logic and then take ‘appropriate action to service
those requests.)

Figure 2-110 shows a high-level block diagram of the
display buffer and memory controlier. Most of the
elements shown in this diagram are already known to
us from previous discussions. However, the row
counter, shown in the upper left-hand corner, is an
entirely new element.

Recall that the display logic generates the signal
SCANRQST during the horizontal sync period of
HSDCYC. This signal is a request to the memory

COUNTER EQUAL TO ZERO UPON ENTRY

COMMENTS

STATEMENT NO. LABEL MICROINSTRUCTION
1 C: OuUTCo, DEC ; “ THE FIRST EXECUTION OF THIS ”
“ MICROINSTRUCTION MAKES THE ”
* COUNTER EQUAL TO 127"
2 OUTCO, PUSHCNTR “ SAVE LOOP COUNTER "
3 OUTCO, CALL PL (CO) ; “ EXECUTE MICROPROGRAM FOR "
: “ HSDCYC IN FIGURE 78 "
4 ° OUTC4, POPCNTR * RESTORE LOOP COUNTER ”
5 OUTC4, IF (CREG < > @) THEN GOTO PL (C);
i “ THIS MICROINSTRUCTION "
“ IMPLEMENTS LOOP "
6 REPEAT1: . OUTCO, DEC 5 N
7 OUTCO, PUSHCNTR - ;
8) OUTCO, CALL PL (CO0)
9 OUTC4, POPCNTR
10 'OUTC4, IF (CREG < > @) THEN GOTO PL (REPEAT1);
EXECUTE
> HSDCYC
484 TIMES
16 REPEAT 3 :
17 .
18
19 .
20 >

Figure 2-97. Improved Microprogram to Implement Period C

2-82

siasibay YIYS WVHA Jo uoljeziuebiQ "ge-z ainbly

V1va O3dIN —e

%l .£304s

Q0I907 AVIdSIA WOHS .

ﬁ.mmomm

e S 119 - 9S¢

0 dS 119 - 962

L€ WVEA
0€ NVHA

L2 WVHA
02 WVHA

INVHAYNO LHOIH H3IMO1

ﬁ. 1304s

INVHAVYNO 14371 HIMOT

ﬁr.omom_w

o}

0 ds 119 - 952

30 ysuig-9sz 4

L WVHA
0} WVHA

L0 VA
00 WYHA

LNYHAVYNO LHOIY H3ddN

INVHAVNO 1437 H3ddn

— OM10H3S

» I1043S

2-83

DAOASH Buling ejqeus indino JeisiBal HIYS jo Bujwil "66-2 inbld

- —t] L £304S
< 952 > 1E—
47VH
H3IMOT 1y
ﬁ e | z3ods
)) < 952 >
(N
P a s |)y 1304S
< 952 > E—
4VH
"3ddn S
ﬁ | s 030HS
— < 952 >
| a i |)y INIXIOH3S
< 952 > 4
& ONIXTOHIS
25 LA‘ 952 >
J) <
[s ¢t <« LSOUNVOS
— 218 [N3dSIaH
))
(S LS S
) bD] <
e I o w [onaAsH

»|

OAOQASH

K

id

2-84

controller to load the VRAM shift register with a new
row of pixels. As shown in Figure 2-79, however, we
needto specify a row address. This functionis served
by the row counter, which is used during the shift
register load cycle.

The address bit labelled RACS8, also shown in Figure
2-110, is the top most address bit of the row address
counter. When this bit is low, the upper half of the
display is active, and when it is high, the lower half of
the display is active. The memory controller uses this
bit to determine which VRAMSs to select during the
shift register load cycle (see Figure 2-111).

The input signals to the memory controllerfall into two
groups. Four of the signals—RD, WR, SCANRQST,
REFRRQST—are the request signals among which
the memory controller arbitrates. The remaining
signals are auxiliary signals used by the memory
controller microprograms to implement the actions
associated with each of the request signals.

In Example 2, we designed a memory controller that
synthesized the timing for reading data from and
writing data to the display buffer. In our current
example, we make use of Example 2 microsubrou-
tines since they perform the same functions we need
now.

Recall, however, that in Example 2, we scanned the
request lines to decide which requestto honor. Inour
current example, we have four request lines. In
scanning all four of these lines, we waste a consider-

able amount of time. A better procedure is to use the -

GOTOTM microinstruction in conjunction with ajump
table, just as we did in Examples 3 and 4.

Aside from requesting different services, there is a
major difference between the behavior of CPU and
display logic request signals. As we discussed in
Example 2, the memory controller generates the
signal OPCOMP to interlock the memory controller to
the CPU. In contrast, the display controller is not
locked to the memory controller when generating the
requests SCANRQST or REFRRQST.

To see the consequence of this, let's examine the
events that take place when the display logic gen-
erates SCANRQST and no other requests are active.
As shown in Figure 2-112, the memory controller
uses the GOTOTM microinstruction and a jump table
to establish the priorities among the incoming request
signals. Now, assuming SCANRQST is active, the
memory controller executes the SCAN microprogram
and then returns to the idle loop. The problem is that
SCANRQST is still active. As a result, the SCAN
microprogram executes again and again until the
display controller negates SCANRQST.

Figure 2-113 presents a solution to the above prob-
lem. In this state diagram, State 0 refers to the
arbitrationprocess thattakes placeusingthe GOTOTM
microinstruction and jump table described above.
Now, when SCANRQST is active, a transition takes
place to State 1. In State 1, the SCAN microprogram
executes and a new row of pixels is loaded into the
VRAM shift register. When the SCAN microprogram
completes its execution, it jumps to yet another state,

w
m
)
(@]
-
X
o

SCANRQST

YYYVYYYVYYY 1
wn
m
D
(@)
r
Py

PIXEL CLK
> PO
cc P
T0 P2
T1 P3
T2 P4
T3 P5
T4 P6
5 P7
T6 P8
vl 7 P9
RESET — /RES P10
Am29PL142

REFRRST

Figure 2-100. Adding Control Signals for HSDCYC

2-85

weibejq bujwiL DADASH Ieuld Joj weibelq Bujwy] sysodwo) *1oL-g e4nbiy

€0

0 LED 9€0 £1%20) €0 €€0 [4%9) 1€0 0€d 20

0c 9 ¥9 V9 ¥9 V9 V9 - ¥9 V9 0c

10

0c

00

0c

138v10HOIN

SM10 13XId ON

15044434

Aﬂ £30HS
i 1304S

A\ 2304ds

(_ 030HS

LINIMTOHIS

ON3IXMIOH3S

_ _ 1SOUNVOS

N3dSIQH

_ ONASH

N

__A OAOJQSH

‘_

2-86

State 2, to continue arbitrating among the CPU re-
quest signals. In State 2, in contrast to State 0, the
continued active level of SCANRQST does not result
in another execution of the SCAN microprogram.

State 2 is implemented in the same manner as State
0, that is, the GOTOTM microinstruction is used in
conjunction with a jump table (see Figure 2-114). Itis
the composition of the jump table, though, that allows
ustoignore selectively the active levelof SCANRQST.
However, when SCANRQST goes low again, a tran-
sition takes place back to State 0.

Notice, also, that in State 2, the state of REFRRQST
isignored. The reasonforthisis that SCANRQST and
REFRRQST are mutually exclusive just as RD and
WR. As a result, SCANRQST goes low and the
memory controller enters State 0 again before
REFRRQST is asserted.

As mentioned above, some of the input signals to the
memory controller are auxiliary signals. For example,
in Figure 2-85 we used a decoder to route CAS to the
appropriate VRAMs depending on the state of ad-
dress bits A8 and A17. However, the Am29PL142

canperformthis function aswell. Consequently, if the
CPU asserts the signal RD, the microprogram READ
executes to implement the desired actions. We can
modify the microprogram READ, however, to ex-
amine the state of A8 and A17 and then assert the
appropriate CAS line.

The auxiliary signal RAC8, described above, is used
in a similar fashion. When the display controller
asserts SCANRQST andthe memory controller honors
this request, the SCAN microprogram executes. The
SCAN microprogram then can examine the state of
RACS8 and again activate the appropriate CAS linesto
select the right VRAMs.

As shown in Figure 2-110, output P13 is fed back to
TEST input T4. The reason for this is to allow the
memory controller to select either the State 0 jump
table or the State 2 jump table. Recall that we used
this technique in Example 4 when we needed to
select one of four priority tables for the VME bus
arbiter.

This completes our description of the operation of the
memory controller. Since the memory controller

LABEL
“ DISPLAY 157 128 ROWS "
C: QuTCO0,
OUTCO0,
OUTCO0,
OUTC40,
0OuUTC40,

“ DISPLAY 2% 128 ROWS "

REPEAT 1: QuTCO0,
QUTCO00,
QouTCOoo,
OUTC40,
0OUTC40,

“ DISPLAY 3% 128 ROWS "

REPEAT 2: ouTCot,
ouTCot,
OuTCo1,
OUTC41,

QUTC41,

“ DISPLAY 4™ 128 ROWS "

REPEAT 3: ouTcCot,
ouTcot,
ouTco1,
OuUTC41,

OUTC41,

MICROINSTRUCTION

DEC;

PUSHCNTR;

CALL PL (UPPER);

POPCNTR;

IF (CREG < > @) THEN GOTO PL (C);

DEC;

PUSHCNTR;

CALL PL (UPPER);

POPCNTR;

IF (CREG < > @) THEN GOTO PL (REPEAT 1);

DEC;

PUSHCNTR;

CALL PL (LOWER);

POPCNTR,;

IF (CREG < > @) THEN GOTO PL (REPEAT 2);

DEC;

PUSHCNTR;

CALL PL (LOWERY);

POPCNTR;

IF (CREG < > @) THEN GOTO PL (REPEAT 3);

Figure 2-102. Final Microprogram for Period C

2-87

00O -0 -0 =+ 0 =+ 0 0o

OO0 - 0O -0 <+ 0 -+ O O o

OUTPUT FORMAT

[P0 Pe Tre TrrTrs [ps T Pa]rPs [P |ri|rPo]

[

3E7
1E7
1E3
5D2
1D2
5D2
1D2
5D1
1D1
5D1
1D1
1E3

4 m o m a m a a4 a4
- m o ma a a4
4 4 a4 e L 0000 2o
O 24 4 4 4 a4 a0 a000
OO0 o0oO0OO0O0O0Oo0o o oo
O 0O 0000000 O = =
4~ OO0 00 = = 4 4 4 a4
4 4 4 a2 0000 4 ==

O 0O 0O 0O 0000 OO0 O =
1A OO0 0O O = = 4 a4 o b

3E7
1E7
1E3
571
171
571
171
572
172
572
172

SERCLKENO

SERCLKEN1

HSYNC

VSYNC

HDISPEN

SROEO

' SROE1

SROE2

SROE3

SCANRQST

REFRRQST
NAME FOR

HEX EQUIV OUTPUT FIELD VALUE

OUTCO00
OUTC10
ouTC20
OUTC300
ouTC310
ouTC320
oUTC330
ouUTC340
ouUTC350
oUTC360
ouTC370
ouTC40
ouTCo1
ouTC11
ouTcat
ouUTC301
ouTC311
QUTC321
ouTC331
ouTC341
ouTC351
ouTC361
ouTC371
ouTCA41

4 4 4 2 L 0000 4
A a4 a4 a4 o
d a4 A a4 A
< IR N = I =)
OO0 O0OO0OO0O0OO0OO0OOOoO OO
OO 00000000 = =
4 4 a4 a1 0000 A
—Aoooo—x-;—xi_-_-._._.

O 0O 0O 0O O O OO o o o =
4 0O 0O 0O O = 4 4 a4 a4 oo

1E3

Figure 2-103. Output Values for Microprogram C and HSDCYC

2-88

incorporates many of the functions described in the
previous examples, we do not present a detailed
explanation of the implementation. However, Figure
2-115 presents the microprogram to implement the
memory controller as a reference.

This example, the frame store, is an especially attrac-
tive example of the power of the Am29PL100 family.
The particular advantage offered by each of the
Am29PL142s is the ability to implement multiple
functions in one chip. For the display logic, we
implemented a full-scale CRT controller in addition to
counters to generate refresh and scan requests. For

LDIDR — This signal latches data from the memory
into the input data register (IDR) on the rising edge.

LDODR — This signal latches data from the A port of
the register file into the output data register (ODR) on
the rising edge.

ENODR — This signal controls the three-state condi-
tion of the ODR. When ENODR is low, the ODR
output is active, allowing data to be written to the
memory (see description of READ signal). Whenthe
signal is high, the ODR output is three-stated, allow-
ing the memory to be read.

the memory controlier, we implemented both the
random access and serial access modes of the
VRAMSs. An alternative implementation based upon
discrete logic would use considerably more
components.

2.3 CONTROL SIGNAL DESCRIPTIONS

LDMAR — This signal latches data into the memory
address register (MAR) on the rising edge (see de-
scription of SELMAR below).

SELMAR — This signal selects the source of the
address to be loaded into the MAR. When SELMAR
is low, the incremented value of the program counter,
R7, is selected. When the signal is high, the address

This section contains the control signal descriptions
contained in the IDR is selected.

for the control unit of the simple computer described
in Section 2.1.1. The 11 control signals are described

below: READ — This signal controls the memory reads and

writes. When READ is low, data from the ODR is

UPPER: OUTC00 |,
OUTC00
C10: OuUTC10
C20: ouTC20
OUTC300 ,

LOAD PL (16 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);

)

))

) ()
C300: WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C310: OUTC310 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C320: OUTC320 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C330: OUTC330 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C340: OUTC340 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C350: OUTC350 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C360: OUTC360 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C370: OUTC370 , WHILE (CREG < > @) WAIT ELSE LOAD PL (16 #D);
C40: OUTC40 WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);

OuTC40 RETURN;

LOWER: OUTCO1
OuTCo1
Ci1: OuTC11
c21: ouTC21
OUTC301 ,

LOAD PL (16 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (19 #D
WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H
WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H
(
(

)i

)i

);
C301:) ()
C311: OUTC311 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C321: OUTC321 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C331: OUTC331 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C341: OUTC341 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C351: OUTC351 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C361: OUTC361 , WHILE (CREG < > @) WAIT ELSE LOAD PL (3F #H);
C371: OUTC371 , WHILE (CREG < > @) WAIT ELSE LOAD PL (16 #D);
C41: OUTCA41 WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);

OUTC41 , RETURN;

Figure 2-104. Microprograms Upper and Lower

2-89

a pue g spoliad bupng 81949 sufs [eluoziioy Joj Bujwiy "901-2 oinbi4

Lagn3s 0ago3s 739V I10HOIN
Lag1no 0ag.Lno aNTvYA 1NdLNO
(o¥ + 2159) 2SS ov S0 13XId 'ON
))
(™ ONASA
))
14s l _ ONASH
|

agOAJSH >

v polad Bupng 8949 suAs [eluoziioH Joy Bujwi] “501-z 8inbiy

1yD3s ovo3s 138V I0HOIN
IV1NO 0v1no 3INIVA 1NdLNO
(ov +215) 255 ov S)10 T3aXid 'ON
)
L ONASA
)
e | [ONASH
l¢ N

VOAOSH >

2-90

written to the memory at the location specified by the
MAR. When the signal is high, data is read from the
memory and latched into the IDR (see description of
LDIDR above).

SELRFDATA — This signal selects the source of the
data to be written into the register file. When
SELRFDATA is low, data from the IDR is written into
the register file. When the signal high, data from the
ALU is written into the register file.

SELRFADDR — This signal selects the source of the
Port Aaddress of the register file. WhenSELRFADDR
is low, the address comes from the IDR. When the
signalis high, the address comes from the control unit
(see description of PORTAADDR below).

PORTAADDR — These bits select the Port A ad-
dress of the register file. When the signal low, the
address comes from the IDR. When it is high, the

address comes from the microcode (see description
of SELRFADDR above).

WRRF — This signal writes data into the register file
at the address specified in Port B.

ALUCODE — These bits select the ALU operation to
be performed (see Table 2-1 in Section 2.1).

2.4 INSTRUCTION SET DESCRIPTIONS

This section contains the descriptions of the instruc-
tion set for the simple computer described in Section
2.1.

The 15 instructions are described below:

SHIFTL — Register RO is shifted left 1—16 positions
as specified in the COUNT field.

DEVICE
DEFINE

(PL142)

OUTA0 = 1EF#H
OUTA1 = 1EB#H
OUTBDO = 1E7 #H
OUTBD1 = 1E3 #H;

" MICROPROGRAM FOR HSCYCA *

LOAD PL (36 #D);
* LOAD COUNTER WITH INITIAL COUNT *
WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
* GENERATE WAVEFORM FOR SEGA0 *

WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);

. WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);

WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
WHILE (CREG < > @) WAIT ELSE LOAD PL (36 #D);
* GENERATE FIRST §12 CYCLES OF SEGA1 "

. WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);

* MICROPROGRAM FOR HSCYCBD *

LOAD PL (36 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);

BEGIN

SEGAO0: OUTAO ,
OUTAD ,

SEGAT1: OUTA1 ,

. OUTA1

OUTAt ,
OUTA1 ,
OUTA1
OUTAt1 , RETURN;

SEGBDO: OUTBDO,
ouTsDo,

SEGBD1: OUTBD1,

ouTBD1,
ouTeD1,
ouTBD1,
ouTsD1,
0ouTBD1,

WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
WHILE (CREG < > @) WAIT ELSE LOAD PL (7F #H);
WHILE (CREG < > @) WAIT ELSE LOAD PL (36 #D);
WHILE (CREG < > @) WAIT ELSE LOAD PL (0 #H);
RETURN;

Figure 2-107. Microprograms to Synthesize HSCYCA and HSCYCBD Cycle

2-91

ADD — The content of the specified source register
is addedto the content of the destination register. The
result is written back to the destination register.

SUB — The content of the destination register is
subtracted from the content of the source field. The
result is written back to the destination field.

AND — The content of the source register is ANDed
with the content of the destination register. The result
is written back to the destination register.

OR— The content of the source register is ORed with
the content of the destination register. The result is
written back to the destination register.

JMP — Transfer of control is passed to the address
specified in the ADDRESS field.

CALL SUBROUTINE — Transfer of control is passed
to the address specified in the ADDRESS field. The
address of the next sequentialinstruction is stored on
the stack for subsequent continuation of instruction
processing.

RETURN — Transfer of controlis passed to the return
address contained. on the stack. The stack is popped
after the top of stack is used as return address. -

BRANCHN — Transfer of control is passed to the
address specified inthe ADDRESS field if register RO
holds a negative two’s complement number. Other-
wise, processing continues with the next sequential
instruction. ,

BRANCHZ — Transfer of control is passed to the
address specified inthe ADDRESS field if the content
of register RO is zero. Otherwise, processing con-
tinues with the next sequential instruction.

LOAD — Register RO receives the data from the
memory location specified in the ADDRESS field.

STORE — The content of register RO is written to the
memory location specified in the ADDRESS field.

INC — The content of the destination register is
incremented by one.

DEC — The content of the destination register is
decremented by one.

OUTPUT FORMAT

|P10|P9IP8|P7|F’6|F’5IP4|P3IPZI‘P1IPOI

L Sercikene
SERCLKEN1
- HSYNC

OUTPUT VALUES
0 0 1 1 1 1 0 1 1

0 0 1 1 1 1 0 1 0

0 1 1 1 1 0 0 1

VSYNC

HDISPEN

SROEO

SROE1

SROE2

SROE3

SCANRQST

REFRRQST

NAME FOR
HEX EQUIV OUTPUT FIELD VALUE

1 1 1EF OUTAO
171 1EB OUTA1
1 1 1E7 ouTBDO
1 1 1E3 ouTBD1

Figure 2-108. Output Values for Segments of HSCYCA and HSCYCBD

2-92

STATEMENT NO. LABEL
1 A:
2
3
4
5
6
7
8 EXIT A:
9 B:
10
11
12
13
14
15
16 EXIT B:
17 C:
18 D:
19
20
21
22
23
24
25 EXIT D:

MICROINSTRUCTION) COMMENTS
OUTAQ, IF (CREG = 0) THEN LOAD PL (7 #D); “ INITIALIZE LOOP COUNTER FOR 6 ITERATIONS "

OUTAO0, DEC; * DECREMENT LOOP COUNTER *

OUTAQ, PUSHCNTR; “ SAVE LOOP COUNT "

OUTAO, CALL PL (SEGAO0); ' * EXECUTE HSCYCA MICROPROGRAM "
OUTA1, POPCNTR,; “ RESTORE.LOOP COUNT "

OUTAT1, IF (CREG =0) THEN GOTO PL (EXIT A);“ TEST LOOP EXIT CONDITION ”

OUTA1, GOTO PL (A); “ CON;T]NUE EXECUTING LOOP "

OUTA1, GOTO PL (B); “ COMPENSATE FOR ONE CLOCK LOSS ”
OUTBDO, IF (CREG = 0) THEN LOAD PL (5 #D);" INITIALIZE FOR 4 ITERATIONS ”
OuUTBDO, DEC;

OUTBDO, PUSHCNTR;
OUTBDO, CALL PL (SEGBDO);

OUTBD1, POPCNTR;

OUTBD1, IF (CREG = 0) THEN GOTO PL (EXIT B);
OUTBD1, GOTO PL (B);

OUTBD1, GOTO PL (C);

SEE FIGURE 2-102 . “ EXECUTE MICROPROGRAM C”
OUTBDO, IF (CREG = 0) THEN LOAD PL (4 #D); “ INITIALIZE FOR 3 ITERATIONS "
OUTBDO, DEC;

OUTBDO, PUSHCNTR;

OuUTBDO, CALL PL (SEGBDO);

OUTBD1, POPCNTR;

OUTBD1, IF (CREG = 0) THEN GOTO PL (EXIT D);
OuUTBD1, GOTO PL (D);

OUTBD1, GOTO PL (A);

Figure 2-109. Microprogram to Generate Periods A-D

2-93

J9]jonuo) Alowsay pue Jayng Aejdsiq jo weibeiq %ooig "0 L-Z 2inbid

H37710HINOO AHOWIN

;’ €ld 2viidée

1SDHH4TH < okd S3W/ 1353
LSDHNVOS <€ 6d Hl <—|2id 4
€30HS < 8d a1 1 OVHNT €«—|}id
230ds < Ld sL OVHON <«——{0kd S3/
130HS < od il N3Lva <«— 6d
0304s < 5d €L avad <«— &d
N3dSIOH < vd 2L ESV0 €«—— ud 20
ONASA <€ £d b 2sv0 «— od oL
ONASH < ed oL LSV <«——| sd sL
id 00 0SV0 €«— td vl
I MT0H3S % % <« ¢ed el —
og 4 SHOQYIOONI €«— ad = 2l [——
0 51043S A|Q|A SHOQVMOUNT <€«——| td Hof—
b dWN00dO <€«—— 0d oL —
10 13XId
< 4 4 <
FEEET!
AV1dSIid ——€ SY0 ——2 SY0 — LSV
v v v
. |
Y
8.1 8
_ JAN _OI SHAQV10ONT H. SHAQYMOUNI

H344N8 SS3HAAVY NWNT00

H344N9 SS3HAAVY MOYd

H3ILINNOD SS3HAAVY Mod

M10 13XId

13834

8 Ovd
LIV
8V

1s0HH43Y
LSDHNVOS
M

ad

Hll
av3d
0sv0
Svd

8 Ovd

QVHON

OvuN3

2-94

RAC 8 VRAM SELECTION

0 VRAM 00, VRAM 01, VRAM 10, VRAM 11
1 VRAM 20, VRAM 21, VRAM 30, VRAM 3

Figure 2-111. VRAM Selection Using RAC8 During Shift Register Load

READ

/ WRITE
GOTOTM
+
PRIORITY
TABLE
SCAN
IDLE =
\ REFRESH

Figure 2-112. Memory Controller Arbitration

READ WRITE
RD=0 WR=0
STATE 2
SCANRQST = 1
+ REFRRQST = 1
SCAN STATE 1 STATE 3 REFRESH
SCANRQST =0
SCANRQST = 1 REFRRQST =0 REFRRQST = 1
STATE 0
RD=0 WR=0
READ WRITE

Figure 2-113. State Diagram for Memory Controller

2-96

uoljedliquy 18jjonjuo Alowsyy pesiasy " L1-g ainbi4

HS34434

ERle]]

NVOS

3LEM

Jiavi
ALlHOIdd
+

W10109

avad

031ViS

374l

ERicLAR
ALlHOHd
+

W10109

¢ 31vis

3LiEM

avay

2-97

DEVICE (PL142)

DEFINE RD = To
WR = T
sc = T2
RF = T3
A8 =15
Al7 = Té
RAC8 = CC
FAL = EQ
RDOO = 1BF4#H ~ “OUTPUT VALUES DURING "
RDO1 = 19F2#H *READ CYCLE®
RD020 = 1903 #4 “(FROM STATE)"
ADO21 = 1913 #H '
RD022 = 1923 #H
RD023 = 1933 #H
RD20 = 8BF4#H “OUTPUT VALUES DURING "
RD21 = 39F2#H “READCYCLE”
RD220 = 3903 #H . *(FROMSTATE2)"
RD221 = 3913 #H
RD222 = 3923 #H
RD223 = 3933 #H
WR00 = 1AF4#H “OUTPUT VALUES DURING "
WRO1 = 18F2#H “WRITE CYCLE"
WR020 = 1803 #H “(FROM STATEO0)”
WR021 = 1813 #H
WR022 = 1823 #H
WR023 = 1833 #H
WR20 = 3AF4#H “OUTPUT VALUES DURING "
WR21 = 38F2#H “WRITE CYCLE"
WR220 = 3803 #H *(FROM STATE2)"
WR221 = 3813 #H
WR222 = 3823 #H
WR223 = 3833 #H
RFO1 = 3BOC#H “OUTPUT VALUES DURING "
RF02 = 3B04#H “REFRESH CYCLE"
RFO3 = 3BF4#H
SCO1 = 23FC#H “OUTPUT VALUES DURING "
SC02 = 23F4#H *SCAN REQUEST CYCLE"
SC03 = 33F4#H
SC040 = 3334 #H
SC050 = 3F34 #H
SC041 = 33C4#H
SC051 = 3FC4#H
IDLEO = 1BFC#H *IDLE VALUES IN STATEO"
IDLE2 = 3BFC#H; *IDLE VALUES IN STATE2”

Figure 2-115. Memory Controller Microprogram for Example 5

2-98

BEGIN

STO:

ST2:

“ STATE 0 JUMP TABLE "

IDLE 0, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 0, IF (NOT FAIL) THEN GOTO WRITEOO;
IDLE 0, IF (NOT FAIL) THEN GOTO READOO;
IDLE 0, IF (NOT FAIL) THEN GOTO TM (F #H);
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR,;
IDLE 0, IF (NOT FAIL) THEN GOTO SCAN;
IDLE 0, IF (NOT FAIL) THEN GOTO SCAN;
IDLE 0, IF (NOT FAIL) THEN GOTO SCAN;
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR,;
IDLE 0, IF (NOT FAIL) THEN GOTO REFR;
IDLE 0, IF (NOT FAIL) THEN GOTO REFR;
IDLE 0, IF (NOT FAIL) THEN GOTO REFR;
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 0, IF (NOT FAIL) THEN GOTO ERROR;

“ STATE 2 JUMP TABLE "

IDLE 2, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 2, IF (NOT FAIL) THEN GOTO STO;

IDLE 2, IF (NOT FAIL) THEN GOTO ST0;

IDLE 2, IF (NOT FAIL) THEN GOTO ST0;

IDLE 2, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 2, IF (NOT FAIL) THEN GOTO WRITE20;
IDLE 2, IF (NOT FAIL) THEN GOTO READ20;
IDLE 2, IF (NOT FAIL) THEN GOTO TM (1F #H);
IDLE 2, IF (NOT FAIL) THEN GOTO ERROR;
IDLE 2, IF (NOT FAIL) THEN GOTO WRITE20;
IDLE 2, IF (NOT FAIL) THEN GOTO READ20;
IDLE 2, IF (NOT FAIL) THEN GOTO TM (#1F #H);
IDLE 2, IF (NOT FAIL) THEN GOTO ERROR
IDLE 2, IF (NOT FAIL) THEN GOTO ERROR
IDLE 2, IF (NOT FAIL) THEN GOTO ERROR
IDLE 2, IF (NOT FAIL) THEN GOTO ERROR

Figure 2-115 (Continued)

2-99

READOO:

READO1:

READO2:

READO3:

“ ROUTINE TO SYNTHESIZE READ CYCLE TIMING”
“ (SEE FIGURE 2-78) "
“ ENTRY IS FROM STATE 0 "

RD00, IF (A8) THEN GOTO PL(READO1);

RDO1, IF (A17) THEN GOTO PL (READ02);

RD020, CONTINUE;

RD020, CONTINUE;

RD020, IF (RD) THEN GOTO TM (F #H) ELSE WAIT;

“AB=08&A17=0"

RDO1, IF (A17) THEN GOTO PL (READO3);

RD021, CONTINUE;

RDO021, CONTINUE;

RDO021, IF (RD) THEN GOTO TM (F #H) ELSE WAIT;
“A8=18&A17=0"

RD022, CONTINUE;

RD022, CONTINUE;

RD022, - IF (RD) THEN GOTO TM (F #H) ELSE WAIT;
“AB=08&A17=1"

RD023, CONTINUE;

RD023, CONTINUE;

RD023, - IF (RD) THEN GOTO TM (F #H) ELSE WAIT;

“AB=18&A17=1"

Figure 2-115 (Continued)

2-100

READ20:

READ21:

READ22:

READ23:

“ ROUTINE TO SYNTHESIZE READ CYCLE TIMING”
“ (SEE FIGURE 2-78) "
“ENTRY IS FROM STATE 2"

RD20, IF (A8) THEN GOTO PL (READ21);

RD21, IF (A17) THEN GOTO PL (READ22);

RD220, CONTINUE;

RD220, CONTINUE;

RD220, IF (RD) THEN GOTO TM (1F #H) ELSE WAIT;

“AB=0&A17=0"

RD21, IF (A17) THEN GOTO PL (READ23);

RD221, CONTINUE;

RD221, CONTINUE;

RD221, IF (RD) THEN GOTO TM (1F #H) ELSE WAIT;
"A8=1&A17=0"

RD222, CONTINUE;

RD222, CONTINUE;

RD222, IF (RD) THEN GOTO TM (1F #H) ELSE WAIT;
"AB=0&AI7=1"

RD223, CONTINUE;

RD223, CONTINUE;

RD223, IF (RD) THEN GOTO TM (1F #H) ELSE WAIT;

“AB=1&A17=1"

Figure 2-115 (Continued)

2-101

WRITEOQO:

WRITEO1:

WRITEO2:

WRITEOS:

“ ROUTINE TO SYNTHESIZE WRITE CYCLE TIMING”
“ (SEE FIGURE 2-78) "
“ENTRY IS FROM STATE 0"

WRO00, IF (A8) THEN GOTO PL (WRITEO1);
WRO1, IF (A17) THEN GOTO PL (WRITE02);
WR020, CONTINUE;

WR020, CONTINUE;

WR020, IF (WR) THEN GOTO TM (F #H) ELSE WAIT;

“AB=08&A17=0"

WRO01, IF (A17) THEN GOTO PL (WRITEO3);
WR021, CONTINUE;

WR021, CONTINUE;

WR021, IF (WR) THEN GOTO TM (F #H) ELSE WAIT;
WR022, CONTINUE;

WR022, CONTINUE;

WR022, IF (WR) THEN GOTO TM (F #H) ELSE WAIT,
“A8=0&A17=1"

WR023, CONTINUE;

WR023, CONTINUE;

WR023, IF (WR) THEN GOTO TM (F #H) ELSE WAIT;

“A8B=18&A17=1"

Figure 2-115 (Continued)

2-102

WRITE20:

WRITE21:

WRITE22:

WRITE23:

* ROUTINE TO SYNTHESIZE WRITE CYCLE TIMING”
* (SEE FIGURE 2-78) "
“ENTRY IS FROM STATE 2

WR20, IF (A8) THEN GOTO PL (WRITE21);

WR21, IF (A17) THEN GOTO PL (WRITE22);

WR220, CONTINUE;

WR220, CONTINUE;

WR220, IF (Wﬁ) THEN GOTO TM (1F #H) ELSE WAIT;

“AB=0&A17=0"

WR21, IF (A17) THEN GOTO PL (WRITE23);

WR221, CONTINUE;

WR221, CONTINUE;

WR221, IF (WR) THEN GOTO TM (1F #H) ELSE WAIT;
"AB=18&A17=0"

WR222, CONTINUE;

WR222, CONTINUE;

WR222, IF (WR) THEN GOTO TM (1F #H) ELSE WAIT;
“AB=08&A17=1"

WR223, CONTINUE;

WR223, CONTINUE;

WR223, [F (WR) THEN GOTO TM (1F #H) ELSE WAIT;

“AB=18&A17=1"

Figure 2-115 (Continued)

2-103

REFR:

SCAN:

SCANO:

ERROR:

“ ROUTINE TO SYNTHESIZE REFRESH CYCLE TIMING”
“(SEE FIGURE 2-79) "

RFO1,
RF02,
RFO3,
RFO03,

CONTINUE;
CONTINUE;
CONTINUE;
IF (NOT FAIL) THEN GOTO PL (ST2);

“ ROUTINE TO SYNTHESIZE SCAN CYCLE TIMING ”
“ (SEE FIGURE 2-79)

SCot,
SCo2,
SCo3,
SC040,
SCO050,

SC041,
SCO051,

CONTINUE;
CONTINUE;
IF (RAC8) THEN GOTO PL (SCANO);
CONTINUE;
IF (NOT FAIL) THEN GOTO PL (ST2);

CONTINUE;
IF (NOT FAIL) THEN GOTO PL (ST2);

“ THIS ROUTINE IS ENTERED WHENEVER "
“ BOTH RD AND WR ARE ACTIVE "
“ OR BOTH SCANRQST AND REFRRQST ARE ACTIVE ”

Figure 2-115 (Continued)

2-104

CHAPTER 3

ARTICLE REPRINTS

DESIGN ENTRY

Fuse-programmable chip
takes command
of distributed systems

The first fuse-programmable controller
eliminates bulky and expensive designs, freeing distributed
intelligence to carve out a greater niche for itself.

spawned the suburbs, standard microprocessor

buses and add-on boards have distributed pro-
cessing intelligence, revolutionizing the design of
digital systems. Breaking systems into independent
modules shortens the design cycle, eases upgrades,
and accelerates fault diagnosis. But despite these ad-
vantages, an essential element has been missing: a
one-chip controller geared specifically to the needs of

In much the same way that cars and highways

distributed intelligence.

Without that critical ingredient, engineers have

been forced to turn to less than optimal solutions.

One approach relies on boards packed with as many

as 35 SSI and MSI devices. Another tack is to go with

a powerful —yet costly—VLSI chip. Alternatively, a
programmable logic device can be pressed into ser-
vice, but such circuitry lacks the computing power to

control peripherals.
The missing element, a fuse-programmable con-
troller chip, is now here. By mixing intelligence and

control, the Am29PL141 stakes out new territory for
distributed systems. The 20-MHz IC combines for the

first time all of the elements of an intelligent micro-

code controller. Its powerful sequencing logic steps
through the controller’s 64-by-32-bit pipelined
PROM. That fuse-programmable memory stores a
user-defined microprogram drawn from a set of 29

Om Agrawal and Deepak Mithani

Advanced Micro Devices Inc., 901 Thompson PI.,
P.O. Box 3453, MS 47, Sunnyvale, CA 94088;
(408) 749-2903.

microinstructions, including a repertoire of jumps,
multiple branches (or case statements), and sub-
routine calls. All can be executed conditionally, de-
pending upon the outcome of one of eight tests. In
addition, a serial shadow register on the 28-pin chip
helps designers diagnose system troubles right down
to a particular IC. (In the past, expediency often dic-
tated that complex trouble-shooting be avoided for
as long as possible.)

Four basic blocks

The controller comprises four main functional
blocks. Three of them —the microaddress control
logie, condition code selector, and microinstruction
decoder —form the cornerstone of the controller, the
address sequencer. The fourth is a microprogram
memory (64 by 32 bits) with a pipelined register and
serial shadow register (Fig. 1).

For the most part, the elements of the address
sequencer are fairly typical. Nevertheless, the way in
which they are organized and connected, as well as
the instruction set, make the chip unique. For ex-
ample, the microaddress control portion of the
sequencer contains one register for counting loops
and another for stacking subroutine return address--
es. Yet either register can be employed to double the
capacity of the other. Consequently, the chip can nest
two levels of loop counting or two levels of subroutine
branching (the instruction set reflects those abili-
ties). And the high degree of interaction between ele-
ments, particularly within the microaddress control
logic, makes necessary a highly sophisticated micro-

“Reprinted with pemission from Electronic Doielm, Vol.33, No.24, 3

Copyright Hayden Publishing Co., Inc., 1985,

DESIGN ENTRY

Fuse-programmable controller

instruction set.

The microaddress control logic is the brain of the
address sequencer, since it generates the addresses
that access the microinstructions. At any time, the
address that is called depends on the preceding in-
struction and the outcome of any conditional tests.

Within the control logic, a program-counter multi-
plexer supplies the PROM’s 6-bit address. The multi-
plexer takes the address from a microprogram
counter, incremented program counter, branch con-
trol logic, or subroutine register. Because the pro-
gram counter contains the address of the currently
executing instruction, that instruction is executed
again when the program counter is selected as the
address source. As a result, the counter plays a fun-
damental role in tallying loops and executing “wait
until true” instructions.

The incrementer holds the next address in the
sequence, and is the expected source when no jumps
are executed and no branch or subroutine conditions
exist. When conditional statements like “if ...
then... else” and multiple branches pass the re-
quired tests, or when unconditional jumps are exe-
cuted, the branch control logic supplies the address.
Finally, when the program calls a subroutine, the
subroutine register supplies the necessary address.

A multiplexer selects one of three address sources.
If only one stack level is needed, the value stored in
the subroutine register is chosen. When the count
register feeds the subroutine register, however, it
furnishes an additional stack level. The third source,
the incrementer, supplies the subroutine’s return
addresses.

Doing double duty

If not needed for a second subroutine level, the
count register can, among other functions, execute it-
erative loops and time external events. To accom-
plish the former, the controller loads the register
with the number of iterations to be run. Each iter-
ation decrements the register until it reaches zero.
The zero-detection logic associated with the counter
informs the chip’s microinstruction decoding logic
when the register “bottoms out.” ,

Using the same logic, an instruction can be re-
peated a set number of times. Repeated executions of
the same instruction is a simple way to insert wait
states and, therefore, build an interface to different
microprocessors and peripherals.

The count register is loaded from any of four
sources: a decrementer, for normal loops; an instruc-

Electronic Design * October 17, 1985

tion field; the subroutine register; and the branch-
control logic. The last derives a 6-bit value from a
data field in a microinstruction. ‘

The branch-control logic, a powerful block within
the sequencer, calculates the 6-bit value either by ap-
plying the microinstruction data field directly or by
using it to mask the chip’s six test inputs, Ty through
Ts. In the second case, the masked input actually be-
comes the branch address. Moreover, either the data
field or masked test value serves as both a branch ad-
dress and a count value.

The same control logic also compares the masked
test inputs to a constant in a microinstruction field.
The outcome of this check affects a flip-flop. The lat-
ter’s condition itself becomes a factor in deciding
conditional branch and subroutine instructions. If a
match occurs, the flip-flop is set. Alternatively, the
flip-flop remains unchanged if there is no match.
Because the flip-flop does not change when there is
no match, it is particularly useful for comparing
ASCII characters and other 6-bit fields, as well as for
successively checking the chip’s test inputs.

Controlling conditions

A set flip-flop is one of the eight aforementioned
tests that fulfills a conditional branch or subroutine.
Through its condition-code selection logic, the con-
troller is able to check each of its six test input lines,
as well as the Condition Code input. Further, an
exclusive-OR gate within the selection logic switches
the meaning, or interpretation, of a test result. In
other words, with no external hardware, a test condi-
tion can be asserted either when a match occurs or
when one does not.

The final component of the chip’s sequencer sec-
tion is the microinstruction decoder. That pro-
grammable logic array generates the IC’s internal
control signals based on the microinstruction being
executed and the test results reported by the con-
dition-code logic.

The IC’s fourth functional block comprises the
fuse-programmable microprogram memory, pipe-
lined register, and serial shadow register. The pipe-
line register is 32 bits wide, and stores the micro-
instruction being run. The next address is calculated
by the sequencer and its contents is fetched from the
microprogram memory. The upper 16 bits of the
pipeline’s output remain within the chip to sequence
addresses and control internal functions.

Only the 16 low-order bits link to the outside, as
user-defined control lines. Of these, the upper byte is

3-2

AmM29PL141 r B
fuse-programmable | Microaddress
controller control logic® I
I Decrementer I
(oaumu -1)
| |
I —-l [—-‘ [———— I
I * Counter Microprogram |
| multipiexer counter (PC) |
| I
‘ Count register Incrementer I
Test inputs, | (PC+1) |
To-Ts 5 .
o) 75 1 | '
Sondition) Tanch Gontrol = !
ode ‘ 0= brouth
A { loglc detection st':altrlplax': |
I “ET :] !
12} I : I
i i ” 2 Subroutine
Condition l
] r_ |
=il l P o I
rogram counter
| | orgunlplexar |
el |
|]
I 1
| |
T 32bifseral)

' shadow register O

| : sgister - T s00
= | _ Pipelinad register]
e 'J T =L T vicroprram

~ decoding logic * 18 42 15 memory
- : =3 o5 dok LecPa olr Boe)
*Part of sequencing logio o - Outputs

1. The 20-MHz Am29PL 141 is the first complete microprogrammable controller chip, making it an important
building block for distributed processing systems. Its powerful sequencing logic steps the controller through
its pipelined PROM. The fuse-programmable memory is 64 by 32 bits.

3-3

DESIGN ENTRY

Fuse-programmable controller

put in the high-impedance state by setting a micro-
instruction’s Output Enable bit to 0. Moreover, chips
can be cascaded readily if more than 16 control bits
are needed (Fig. 2).

The serial shadow register, also 32-bits wide, sim-
plifies device- and system-level diagnostics. It can be
Joaded in parallel with the contents of the pipelined
register or loaded serially from the Serial Data Input
pin. On the other hand, the serial register can also
load the pipeline or shift data out serially. It also may
simply hold the data sent to it.

To check out the chip, an instruction is shifted
serially into the shadow register and then loaded in
parallel into the pipeline. Doing so forces the instruc-
tion to be executed, and its results transferred back

Microprogram

Microprogram
memory
(64 X 32 blts)

from the pipeline into the shadow register. From
there it is shifted out for diagnosis. If all the shadow
registers in a system are tied together, a series diag-
nostic loop is created that isolates a problem down to
a single chip.

The shadow fuse

A separate fuse must be blown to set up the serial
shadow register. When that is done, four pins are
redefined to handle diagnostics. Specifically, the
Condition Code and Zero lines and Output Data Bits
6 and 7 become, respectively, the Serial Data In
(SDI), Serial Data Out (SDO), Diagnostic Clock
(DCLK), and Mode control lines.

The strength of any controller—and the advantage

Microprogram
address
. sequencer

Microprogram
memory
(64 X 32 bits)

- Pipelined
register

2. When an application calls for more than 16 control bits, two or more chips can be
cascaded horizontally. The lower 16 bits of each of the chip’s 32-bit microinstructions
(of which there are 29) serve to control a system’s components. Eight of these 16 con-
trol bits can be put into a high-impedance state under microinstruction control; the oth-

er 8 bits are always enabled.

Electronic Design « October 17, 1985

3-4

DESIGN ENTRY

Fuse-programmable controller

of a microprogrammed system that employs it—lies
in an engineer’s ability to specify the sequence in
which microinstructions are executed. To ensure
that ability, the controller executes all the basic
high-level constructs required for structured micro-
programming. Its 29 op codes include sequential in-
structions, conditional instructions, dual branching
forks, and multibranching case statements. Iterative
executions, like For, While, When, and Until, round
out the set. In addition, Jump, Jump to Subroutine,
Loop, and Compare instructions allow designers to
store very complex algorithms in the chip’s 64-word
memory.

Instruction formats fall into two categories. The
first is for general microinstructions; the second is
for the chip’s Compare instructions. The latter com-
pare a 6-bit test input to a masked constant. The
Compare instructions are well-suited for character

searches, as well as key searches in a look-up table.

A single-precision, floating-point peripheral board

(Fig. 3) presents a good example of the part that the
controller plays in a distributed system. As a micro-
programmed design, the peripheral serves as an add-
on math accelerator card that plays with different
hosts and buses. The controller orchestrates the ac-
tions of the floating-point processor, and various reg-
isters, register files, and memory chips.

Simple arithmetic

The processor is simple to use, partly because it in-
curs no pipeline delays. It conforms to IEEE and oth-
er industry standards, and takes only a single clock
cycle to add, subtract, or multiply. It needs five cycles
to divide, using the Newton-Raphson method that in-
verts one of the factors and multiplies. In operation,
to divide X by Y the chip fetches the approximate in-
verse of Y from a PROM-based table and multiplies
it by X. One or two iterations of this method increase
the initial accuracy.

The floating-point board works with a microword

FIFO register
Empty

Instruction
register

(2) Am29PL 141
controllers

Outputs

.9/» To-Ts A

r Data Output register

Data Input register I ;

3Re

(2)
Dual-access

register files
(Am29334)

perand R' Operand S

Instruction Floating-point

processor
(Am29325)

Enable

To register file .~

Final Result

3. In a typical application, the controller oversees the workings of a floating-point pro-
cessor board. Host instructions sent to the FIFO and instruction registers initiate sub-
routines in the controller that generate the signals that run the board. Two controllers
are employed to supply the necessary number of control signals.

Electronic Design < October 17, 1985

3-5

DESIGN ENTRY

Fuse-programmable controller

of at least 25 bits, 9 more than available with one con-
troller. Thus the design employs two controller chips.
The floating-point processor requires five command
bits. Three are instructions and two select the input
source. It also needs three control bits to enable its
trio of data registers. Two other chips (each a dual-
access four-port register of 64 words by 18 bits) tem-
porarily store commands. They accept 12 register ad-
dress bits (6 for source and 6 for destination) from
the host or the controller’s microprogram memory.
Data passes to and from the host through input
and output registers on the board, which call for
their own enable signals. Another bit is needed to ad-
vance the FIFO instruction register. One is necessary
to enable and another to select a status word. (The
floating-point chip supplies status information,
which is available to the controller through its test
inputs as well as to the host through the register file.)
Seven control bits are left for miscellaneous tasks.
Operation begins when at least one 16-bit instruc-
tion is loaded from the host into the peripheral’s
FIFO register. The instruction consists of a 4-bit op
code, a 6-bit source-register address, and a 6-bit ad-
dress for the second source register, which also stores

4. Loading an instruction into the FIFO starts the pe-
ripheral and activates the controller, which loads an
external instruction register and decodes the op
code field. The op code initiates a subroutine in the
controller, issuing the proper control signals, ad-
vancing the FIFO register, and loading the next
instruction.

the results. Until an instruction is received, the con-
troller is in the wait state (Fig. 4). When an instruc-
tion arrives, however, the FIFO’s Empty signal acti-
vates the controller, which then reads the command
from the FIFO into a separate instruction register.
The controller also loads the instruction’s op code in-
to its test inputs. It then masks the two unused test
bits and jumps to a subroutine that performs the
operation specified by the op code. After completing
it, the controller advances the FIFO register to load
the next instruction.

The peripheral executes up to 16 op codes. The first
eight are single-cycle operations and identical to
those of the floating-point processor. They consist of
addition, subtraction, multiplication, and format
conversion instructions. The remaining op codes are
used to load, store, and divide data, and a multiple cy-
cle instruction multiplies and accumulates values.
The four remaining op codes can be defined by the
user to implement application-related operations.

Software and hardware tools are a necessary part
of such projects as the foregoing peripheral. The soft-
ware assembles high-level microprograms and a
JEDEC output file that specifies the fuse pattern to
be burned into the PROM array. Currently, a pro-
gram called Fuse Formatter, which runs on the IBM
PC personal computer, lets designers enter hexadeci-
mal code that corresponds to PROM data. From that
code, the program creates a file that is downloaded
directly to one of several PROM programmers. The
latter blow the corresponding fuses in the micro-
program memory and are the only required hard-
ware tools.O

Om Agrawal is the product planning manager for
programmable logic devices at AMD. He has designed
16- and 32-bit minicomputers, and is the coauthor of a
book on high-speed memory systems. Agrawal holds a
PhD in electrical engineering and computer science
JSrom Iowa State University. He also received an MBA
from the University of Santa Clara.

As a senior product marketing engineer for the
company’s microprocessor division, Deepak Mithant,
designs and markets bipolar microprocessors. He
earned a BSEE from India’s Maharaja Sayajirao
University and an MSEE from the University of
Wisconsin.

Designer’s Guide to
VME Bus Control—Part 1

FPCs and PLDs

stmplify
- VME Bus control

By using fuse-programmable controllers (FPCs) and
PLDs, you can implement VME Bus control in your
computer system with a minimum of hardware. Just
a few chips per plug-in module, and a bus arbiter,
can perform all bus-control functions. This article,
Part 1 of a 2-part series, describes the bus-arbitration
process and control functions and shows you how to
implement the VME Bus protocol in an FPC. Part 2
will describe the implementation of slave controllers,
discuss interrupt handling, and provide tools for pro-
gramming the FPC.

Arthur Khu, Advanced Micro Devices

Until recently, you needed many ICs—sequencers, mi-
croprogrammed control stores, and other MSI/LSI
chips—to implement VME Bus control in a computer
system. Now, however, you can use a minimum of
hardware to handle the bus’s intermodule communica-
tion functions. Just a few fuse-programmable control-
lers (FPCs) and programmable-logic devices (PLDs)
relieve the CPU of all bus-control functions.

A typical VME Bus-based computer system com-
prises one or more master modules (eg, CPU boards),
one or more slave modules (eg, cache/memory boards),
a bus arbiter, and interrupt-handling circuitry. A mas-
ter initiates a data transfer to a slave by requesting
control of the data bus from the bus arbiter. Once bus
control has been granted to a master, the master and
slave exchange control signals according to predefined

Reprinted by permission of EDN Magazine, October 2, 1986
Copyright 1986 Cahners Publishing Company

protocols that guarantee an orderly transfer of data
between the communicating modules. The interrupt-
handling circuitry services all interrupt requests.

By using the streamlined design in Fig 1, you can
implement most intermodule communication in a VME
Bus-based system by using just two types of VLSI
devices: the Am29PL141 fuse-programmable device
and the AmPAL22V10 programmable-logic device. For
the remainder of the bus-control functions, you'll need
some bus-arbitration circuitry, which must occupy a
particular slot on the VME Bus backplane, but which
can reside on the same board with the bus master of
highest priority.

When you design VME Bus control into your system,

- PROCESSOR PROCESSOR BUS
MASTER 1 MASTER 2 ARBITER

cPU CPU

F
ADDRESS/DATA P ADDRESS/DATA
REGISTER c REGISTER

< VME BUS >

Fig 1—You can implement VME Bus control in a computer system
by using just a few fuse-programmable controllers (FPCs) and
programmable-logic devices.

AMPAL22V10
PLO

o3= }

3-7

You can implement VME Bus control in
your computer system by embedding the
bus-control functions in state machines that
comply with the VME Bus protocol.

your first step is to consider the VME Bus protocols.
These protocols specify the steps your circuitry must
take to perform any bus-related operation, such as the
transfer of data between two modules. You can describe
these protocols by means of flow diagrams that show
how the various interface signals reflect the interac-
tions between the communicating modules. Fig 2, for
example, shows how the priority bus arbiter resolves
simultaneous bus requests from two modules that use
the same request line.

Next, you analyze the flow diagrams to pick out the
functions that can be incorporated into FPCs or PLDs,
and you define state machines for those functions. You
can describe the state machines abstractly, by Boolean

logic equations, or. diagrammatically, by means of.

standard flow-chart symbols (eg, rectangles to repre-
sent processes and diamonds to represent control-flow
decisions). Finally, you must write programs for the
state machines in ‘a high-level or assembly language.
You repeat this process to design each of the four main
types of VME Bus controllers: bus arbiters, masters,
slaves, and interrupt handlers. ‘

Before any master module can perform a data trans-
fer, it must request control of the data bus from the bus
arbiter; the arbiter must check to see whether the bus
is free and must resolve any contention between two
masters of equal priority. For example, consider a
priority-option bus arbiter implemented on a single
PLD. The arbiter will monitor the four bus-request
lines (BRys) and assign the highest priority to BRs.

As the flow diagram (Fig 2) shows, the arbiter
grants the bus to the requesting module that’s using
the highest active request line, which is BR; in this
example. To enable your bus arbiter to resolve simulta-
neous bus requests from two or more modules that use
the same request line, you must daisy-chain the associ-
ated bus-grant signal to all the devices using that
request line. Therefore, the arbiter must be in the first
slot of the VME Bus system. The module that’s closest
to the bus arbiter will have the highest priority: If it
requests the bus, it will receive the bus grant and lock
out any modules farther down the chain (Listing 1).
The AND/OR array of the PLD processes all bus
requests in parallel, so that priority arbitration is
complete in only one clock cycle.

Priority arbitration options

Sometimes, the arbiter must force the current bus
master to relinquish control of the bus; this situation
occurs, for example, when a bus master of higher

priority initiates a bus request. The arbiter examines
the priorities of both the current bus master and the
new requester. If these conditions meet the predefined
bus-clear conditions, the arbiter asserts the bus-clear
signal (BCLR).

In the design in Fig 1, the bus arbiter keeps track of
the current bus master’s priority by recording the
bus-request line that was used to gain control of the
bus. For example, if the current bus master used BR: to
gain control of the bus, it sets two output registers
called Bus_Master to the binary value 2. Either of the
two following conditions will activate BCLR:

® The value in Bus_Master is 2, 1, or 0 and the

active bus request line is 3 or 2.)

® The value in Bus_Master is 0, and any bus-

request line is active. .

When the value in Bus_Master is 3, the arbiter will
not honor any bus requests until the Bus Busy line
(BBSY) is high. Listing 2 gives the logical expression of
these conditions. Once having asserted BCLR, the
arbiter holds this line in the active state until the
current bus master releases BBSY.

Be sure to define the BCLR in such a way that
uninterruptible devices can use bus-request line 3,
which has the highest priority. Devices that temporari-

EDN October 2, 1986

LOCATED IN SLOT 2 LOCATED IN SLOT 1

[MASTER B REQUESTER B] [MASTER A REQUESTER A ARBITER]
DAIVE (DEVICE DRIVE (DEVICE
WANTS BUS) HIGH e e WANTS BUS) HI
) 1 ARBITRATION | | TS BUS) HIGH
DETECT (DEVICE IN PROGRESS DETECT (DEVICE
WANTS BUS) HIGH e e e WANTS BUS) HIGH
DRIVE BRT LOW DRIVE BRT LOW
DETECT BF; LOW
DRIVE BGTIN LOW
DETECT BGTIN LOW
DRIVE BBSY LOW
RELEASE BR1 DETECT BBSY LOW
DRIVE (DEVICE DRIVE BGTIN HIGH
GRANTED BUS) HIGH
L , DETECT (DEVICE - DETECT BGTIN HIGH
G GRANTED BUS) HIGH i
MASTER A HAS CONTROL o
DFDAIRANSEERBUS] PERFORM DATA TRANSFERS

DRIVE (DEVICE .

WANTS BUS)LOW. — Ty ,
Pal ,DETEGT(DEWCE
Ba _ WANTS BUS) LOW
HEL@ASE S:

EFUVE (DE\gCLE DETECT BQ§Y HIGH

GRANTED

ARBITRATIO!

L-I-I‘.J PROGRESS ORIVE BGIIN LOW

DETECT (DEVICE
- GRANTED BUS) LOW

IraL Ly
NN DAISYCHAIN N

. MASTERBHAS
| conTROL OF DATA-
L_TRANSFER BUS
el oy

BGTOUT.

ELEASE BR1
(DEVICE GRANTED
SYHIGH - -

DETECT é%Es‘{lgFGﬁRANTED DRIVE BG1OUT HIGH

\]
ETECT BGIIN HiGH

PERFORM DATA TRANSFERS

" DRIVE (DEVICE WANTS
Ceplsilow. T T o e o
ARBITER WAITS

 NEW BUS REQUE

 DETECT (DEVIGE GRANTED
o pusylow

Fig 2—Flow diagrams help you define the VME Bus protocols. This flow diagram illustrates how the bus arbiter chooses between requesters
that have the same priority level.

EDN October 2, 1986

CPU MODULE
(MASTER)

STATUS

FROM BUS
ARBITER _A

Fig 3—You can implement the requester logic for a master module
in an FPC. The FPC handles all bus-acquisition and data-transfer
protocols.

ly can be suspended to accommodate interrupts and
higher-priority operations should be assigned to bus-
request line 0. The BCLR conditions will vary with
your application, but you can modify them just by
redefining the high-level logic expressions.

Master modules

The master modules of VME Bus systems initiate all
data transfers over the bus. A system can have one
master (the CPU unit) or several (multiple processors,

DMA controllers). A master module must control the
bus before it can perform any data transfers. Most of
the bus-control logic resides in the requester section of
the module; this section handles bus acquisition and
communication with other master or slave devices in
the system.

You can microprogram all the requester functions
into a single FPC, which serves as the interface be-
tween the master device and the VME Bus (Fig 3). The
FPC’s microprogram handles the bus-acquisition proto-
col. Upon receiving the bus-grant signal from the
arbiter, the microprogram informs the master device
that it has control of the bus and may initiate a data
transfer. After completing the transfer, the master
device releases the bus-request signal, thus causing the
FPC to free the bus by releasing the BBSY signal. The
FPC may also relinquish control of the bus at the
request of the bus arbiter.

In designing your application, you need to extract the
bus-acquisition phase of the requester from the flow
diagram in Fig 2 and translate this information into a
state diagram (Fig 4), from which you must write the
corresponding FPC assembler source code. Listing 3
gives an example of this code.

FPC-controlled data transfers

Once a master module becomes the bus master (that
is, once it gains control of the bus), it can begin
transferring data to a slave module. A data-transfer
flow diagram (Fig 5) shows the necessary handshaking
signals for transferring 32-bit data between master and
slave. The state diagram for the master module’s FPC
(Fig 4) combines the bus-acquisition (requester) and
data-transfer-control functions of the master module.
An FPC assembler (which the manufacturer of the FPC
provides) simplifies the task of microprogramming this
state machine into an FPC.

Handling unanswered data-transfer requests

To prevent bus lockups, which malfunctioning slave
devices may cause, you should implement a bus-time-
out (BTOy) option in the master module by writing a
microcode routine that uses the 6-bit counter in the
master’s FPC. (Listing 4 gives an example of such a
routine.) The bus-time-out option permits a bus master
to abort a data-transfer cycle if the slave does not
respond within n microseconds.

At the start of every data-transfer operation, the
FPC microprogram loads a value into the 6-bit counter,
tests for the data-transfer acknowledge signal
(DTACK), decrements the counter and tests it for zero,

EDN October 2, 1986

3-10

[@T

®

l REQUEST
@ | T ’
YES l
NO
REQUESTER
CALLS
ARBITER
YES
l @ AGTIVATE H5SY
INFORM MASTER
l iT HAS BUS
BLOCK BUS GRANT OUT
| ORIVE B HIGH
(e

LATCH ADDRESS CHECK IF SEQUENTIAL
ONTO BUS ; : _TRANSFER CYCLE
DRIVE [WORD LOW FOR T .
32-BIT DATA TRANSFERS
DRIVE [ACK HIGH
7O INDICATE A

| DATA-TRANSFER CYCLE |

MASTER
WANTS
i S

DEACTIVATE MASTER-
RANTED-BUS
SIGN,

RIVE DATA

ATCH DATA s

ROM MASTER

WAIT FOR MASTER
70 REQUEST BUS
GO TO START

Fig 4—You can derive detailed state-machine diagrams from your flow diagrams. In this diagram for a master requester, the
bus-acquisition phase is surrounded by a dashed line. Note the close correspondence between the state diagram and the assembly-language
program in Listing 3.

EDN October 2, 1986

The bus-time-out option permits a bus
master to abort a data-transfer cycle if a
slave does not vespond within a specified
time.

and finally loops back to the instruction that tests
DTACK. As soon as DTACK is detected, the program
branches to the section of code that handles a normal
data-transfer operation.)

If the counter value reaches zero, however, the
microprogram must branch to a section of code that can
handle situations in which data-transfer requests are
not completed; such situations are, of course, entirely
dependent on the user and the application. To calculate
the time that will elapse before the program generates
a bus-time-out signal, multiply the number of instruc-
tions in the time-out loop by the system cycle time by
the initial value (plus 1) that the program has loaded
into the count register. EDN

Author’s biography

Arthur Khu, a product planning engi-
neer for Advanced Micro Devices
(Sunnyvale, CA), is responsible for re-
search and definition of advanced pro-
grammable-logic-device architectures.
He holds a BS in Math/Computer Sci-
ence and an MS in Computer Science
from Santa Clara University. In his
spare time, Art enjoys racquetball and
astronomy.

Fig 5—This flow diagram shows the signals you’ll need to perform
a 32-bit data transfer once a master has acquired control of the
bus.

EDN October 2, 1986

Designer’s Guide to
VME Bus Control—Part 2

FPCs and PLDs |

implement

slave con

VME Bus
rollers

By using fuse-programmable controllers (FPCs) and
PLDs, you can implement VME Bus control in your
computer system with a minimaum of hardware. Part
1 (October 2, pg 187) of this 2-part series described
the bus-arbitration process and control functions and
showed how to implement the VME Bus data-transfer
protocol in an FPC. This second and final part de-
scribes the implementation of similar controllers for
slave modules and interrupt handlers, and it pro-
vides tools for programming the FPC.

Arthur Khu, Advanced Micro Devices

When you offload a system’s bus-control functions from
the CPU to a hardware bus controller, you considerably
reduce the time these functions require, thereby im-
proving the data-transfer rate over the bus. You can
substantially reduce the cost and chip count of such a
bus controller by implementing the bus-control Jogic in
VLSI devices such as fuse-programmable controllers
(FPCs) and programmable logic devices (PLDs).

The VME Bus protocol requires that all data trans-
fers over the bus be initiated by a master module. Your
system can include several master modules, such as
CPUs or DMA controllers; a bus-arbiter module arbi-
trates simultaneous data-transfer requests from two or
more masters. No data transfer can take place until the
requesting master has been given control of the bus by
the bus arbiter.

Reprinted by permission of EDN Magazine, October 16, 1986
Copyright 1986 Cahners Publishing Company

{MEMORY BOARD {SLAVE)
~ JapDRESS}
- joecooerf |
DATAZN Q_E_!'RR - :
4 lwd Inermuer|
olE REQUEST §
8 B

’ B ‘
DDRESS MODIFIERS AMo.s

I'ig 1—This device controller, which is implemented with an FPC
and a PLD, handles data-transfer and interrupt protocols for a slave
device in a VME Bus system.

Because a slave can’t initiate a data transfer, your
system must include an interrupt mechanism that al-
lows a slave to request service from a master. You car
implement such a mechanism in your system by design-
ing a slave subsystem like the one in Fig 1. This slave
subsystem comprises a slave module and a slave inter-
rupt controller. The slave interrupt controller, which
consists of an Am29PL141 FPC and an AmPAL22V10
PLD, serves as the interface between the slave subsys-

3-13

The interrupt controller for a slave device
implements the intevrupt protocol in
hardware.

tem and the VME Bus structure. Once the master has
initialized the slave, it can issue commands to the slave.
The slave performs these tasks in the background,
leaving the master free to continue its own operations:
When the slave is ready to return the status or result of
a task to the master, it issues an interrupt request. ;

The VME Bus single-cycle data-transfer protocol
defines the interactions between master and slave con-
trollers (Fig 2). When the master drives the address
strobe (AS) low, the slave controller latches the address
presented on the bus, and a separate address-decoding
unit on the slave board decodes the address. If the
address is not valid (ie, if it’s not in the range associated
with this slave), the slave takes no further action.
However, if the address selects this slave subsystem,

Y DATA WIDTH
DTACK HIGH AND

{INDICATES

IOUS SLAVE 1S
DRIVING DATA BUS)
ow

DIACK LOW

Fig 2—The slave controller recognizes its own address and receives
a data word from the bus master in this flowdiagram for single-cycle i
transfer. .

EDN. October 16, 1986

3-14

- T ‘
DRIVE
iRx LOW

L ; IACK NGNO

ATA STROBE HIGH
 SUBROUTINE

(ol v ot e e

puT sTATUS/D |
C oBYTE

derjved from the flow diagram in Fig 2. The state machine has four modes,

Fig 3—This state-machine diagram for Fig I’s slave controller is
which handle interrupts as well as single, block, and read-modify-write data transfers.

EDN October 16, 1986

3-15

The VME Bus protocol req;ires that all
data transfers over the bus be initinted by
a master module.

the slave looks for signals from the master that specify
whether a read or a write operation should take place.
After presenting or storing data, the slave controller
drives the data-transfer-acknowledge signal (DTACK)
low to inform the master of the successful transfer.

From the VME Bus-protocol flow diagrams (Fig 2),
you can derive a state diagram (Fig 3) for the slave-
controller state machines; Fig 4 shows the resulting
‘timing pattern for the slave controller. You can develop
microcode for the slave controller’s single-cycle transfer
mode from the state diagram and the timing pattern.
Use the address-modifier lines (AMos) to specify the
other three slave operating modes (sequential, or block,
transfers; read-modify-write transfers; and interrupt
cycle). To recognize these special modes, the slave
controllers on each slave board constantly monitor the
six address-modifier lines.

When the code presented on the address-modifier
lines specifies a block-transfer operation, the master
retains control of the bus throughout the operation by

holding AS and BBSY low. For a block transfer, bus
arbitration takes place only once, before the start of the
operation; for single-cycle transfers, bus arbitration
takes place before the transfer of each word. A block
transfer, therefore, takes less time than does the corre-
sponding number of single-word transfers.

At the start of a block-transfer operation, all the
slaves load the address presented on the bus into their
address counters and decoders, but only the slave
whose memory range encompasses the decoded address
responds to the data-transfer request. As each word
transfer is completed, all the slaves increment (or
decrement) their address counters and decode the new
address. This procedure is necessary because the mem-
ory block being transferred may reside on more than
one slave memory board.

In the slave subsystem in Fig 1, the PLD decodes
control signals from the bus and slave board and sends
two signals, OPER, and OPER,, to the slave’s FPC. The
FPC decodes these two signals, along with inputs from

Fig 4—You'll need to generate a timing diagram for each of the slave controller's operating modes. This diagram shows the timing for a
single-cycle data transfer.

EDN October 16, 1986

the slave, bus, and address-decoding units on the slave
board, to determine which of the four possible slave
operating modes to execute. The four modes, which are
designated by binary codes, specify the following oper-
ations:

® (00) Perform a single-cycle transfer

® (01) Perform a sequential-cycle transfer

® (10) Perform a read-modify-write cycle

® (11) Perform an interrupt cycle.

If OPER, and OPER, are both high, the FPC operates
as an interrupter by branching to an interrupt subrou-
tine (Fig 3).

When the slave requests an interrupt, the FPC
generates an interrupt-request signal and waits for the
interrupt-acknowledge signal (IACK) and daisy-chain
signal (IACKIN). When the data strobes become ac-
tive, the PLD reads a 3-bit value from the address bus
(Ay3); this value indicates which interrupt-request line
was acknowledged. The PLD decodes these three bits
to determine whether their value matches its own

request level; if it finds no match, no further action
occurs. If it does find a match, however, the PLD routes
a valid signal to the FPC, indicating that the interrupt
handler has acknowledged the slave’s interrupt re-
quest. The FPC then signals the slave board to put its
status or identification byte on the data bus for the
interrupt handler to use as an interrupt vector. The
slave FPC waits in a loop until the interrupt handler
drives the IACK signal high to signify that interrupt
service is complete.

Besides containing master, slave, and bus-arbiter
modules, a VME Bus system usually has an interrupt-
handler module that handles external I/O or special
system events (time-out or overflow errors, for exam-
ple). You can reduce the logic complexity of the inter-
rupt-handler module in your system by offloading some
of the initial interrupt-recognition tasks to an inter-
rupt-handling preprocessor (IHP). You can use a PLD
as the THP, programming it to preprocess interrupt
requests, obtain control of the bus, and handle hand-

. IHP 1ssues
BUS REQUEST

i \4”"' DEVICE DRIVES lNTERRUPT ﬂEOUEST UNE LOW

7 N ¥ T Ty T { 3 P {

N
T t

lNTEHRUPTCR FUTS STATUS
| .8y TE ON BUS

=t ot t t t 1 1 1

SEHWCE DONE &IGNAL FOHCES P
TO RELEASE BHSY SIGNAL

T ¥ n n 1 T

+ + t +

DGE INTERRUPT LEVEL 6 (110)

LAy "~ INFORM INTERRUFTER ‘IHAT$ BT

!NTERRUPT ACKNOWLEDGE LEVEL 18 ON THE BUS
et

LATCH
STATUS

b

START
| SERVICE

i

[}
| SERVICE
 DONE

5

ARUPT HAND ER ‘IELLS

F 1HP THAT
RAUPT. SEHVICE 1S COM

PLETED '-“-“‘“" i

Fig 5—The interrupt-handling preprocessor monitors the scven VME Bus interrupt-request lives (IR;), identifies the interrupting device,

and tells the interrupt handler when to begin servicing the interrupt. This timing diagram shows the signal states that exist before and during
the transfer of the identification and status bytes from the slave- mrerrupf subsystem to the interrupt handler.

EDN October 16, 1986

When the slave module is in block-transfer
mode, bus arbitration takes place only once
before the start of the operation.

shaking signals (such as interrupt-acknowledge sig-
nals). Only when the IHP latches the interrupt vector
will control pass to the interrupt-handler module.

To define interrupt-request processing, bus acquisi-
tion, and the interrupt vector’s transfer phase, you'll
have to use logic equations written in high-level Boole-
an notation. In the design in Fig 1, the PLD monitors
seven interrupt-request lines and four data-transfer
control inputs, and it sends 10 control signals to the
interrupt handler and the VME Bus drivers. The PLLD
monitors all interrupt-request lines according to the
following logic equation:

IF (IR1 + IR2 + IR3 + IR4 + IR5 +
IR6 + IR7) THEN
BR3:=1; ’

“THIS INTERRUPT HANDLER USES”
“THE BR3 REQUEST LINE”

1)

If any interrupt-request line is active, the PI.D asserts
BR3 to initiate the bus-acquisition phase.

The next step is to wait for the bus-grant-in signal.
Only when BGINS is active will BBSY be active. The
logical expression of this condition is given in the
following equations:

IF (BR3*/BG3IN) THEN
BR3:=1;

(2)

IF (BR3*BG3IN + BBSY*/SERVICE _DONE) THEN (3)
BBSY := 1:

Eq 2 continually asserts BR3 as long as BG3IN is not
active; Eq 3 asserts BBSY only when request line BR3
and BG3IN are active, or if service is not complete after
the THP asserts BBSY.

When the IHP is the bus master, it puts the 3-bit

DATABASF

JEDEC FUSE
PATTERN MAP

PROM BIT l

r_‘L

PROM
PROGRAMMER

EDN October 16, 1986

3-18

interrupt-line-acknowledge value on the bus and as-
serts the data strobes. Upon receipt of the DTACK
signal from the interrupter, the IHP strobes the status
byte from the bus into a register on the interrupt-
handler card. The IHP then informs the interrupt
handler that a status/identification byte is ready and
that the handler should begin servicing the interrupt.
The IHP resolves interrupt priorities within a single
clock cycle because all interrupt/input signal lines are
processed in parallel by the logic array in the PLD.
Listing 1 shows how you’d express the procedure in a
logic-description language.

As you can see from Listing 1, if both the IR7 and the
BBSY signals are active in section 1, then the 3-bit
value generated by the IHP will be binary 111 (decimal
T), regardless of the state of the other interrupt lines.
In section 2, if IRT and BBSY are active and the other
six control signals are inactive, then the 3-bit output

LISTING 1.
IF (BBSY) THEN

BEGIN
(1) IF (IR7) THEN
INTR[2:0] : = 7

"IR7 was active v
"3-bit value acknowledging
interrupt line 7

IF (/IR7*IR6) THEN "IRG6 active, IR7 inactive v

INTR[2:)}: = 6 ; acknowledge interrupt line 6
IF (/IR7*/IR6*IR5) THEN "IR5 highest priority "
"interrupt line active "

INTR[20): =5 ;

(2) IF (1m7'/me /IR5*/IR4*/IR3* /IR2*IR1) THEN
TR[2:0]: =1 “acknowledge interrupt line 1
- END; Ll

value will be binary 001 (decimal 1). In section 2, IRT is
the highest priority line that is active.

The remaining interrupt-preprocessing steps com-
plete the transfer of the interrupt-vector byte; this
transfer is described logically in the following

1F (BBSY) THEN 4)
BEGIN
[ACK := 1; "begin interrupt acknowledge d: n\\

(X) IF (DTACK) THEN ain; if device sends data

LATCH. STATUS := 1;. ” sfer acknowledge (DTACK)
“signal, then latch the status

END:
IF (IACK) THEN
AS = 1. “assert the address strobe signal to inform the
interrupter that the interrupt acknowledge
level ix ready”

lowmg you to use a hlgh level language Inbtead
of specifying the bit patterns shown above, you
~ can wrxte the fol]o ng section of code .

~ OUTPUT, IF (T2 = 1) THEN
. GOTO’ PL (s4>

‘ The assembler translates thls statement mto the
~ appropriate bit patterns; when the E‘FPC execute
the instruction, it generates the bl pattern de-
fined by the symbol OUTPUT
. Every microinstruction wrltten~
language follows this format:

EDN October 16, 1986

= LABEL : - OUTPUT STATEME

~ The label ﬁeld whlch is optxrl

 and translated them to executable form with the

_ ate a JEDEC fuse map. .
. Before physxcally programmmg the PROM con-

writing of subroutine calls and conditional branch
instructions, which you can express in IF-THEN-
ELSE, WHILE-DO, or COMPARE forms. Once
you've written all the instructions with the editor

assembler, you can cause the assembler to gener-

“‘txjol store that you've designed, you can test your
~des1gn with the he}p of the test~vector generatoz

st vectors, from a uber-generated truth ta,
id converts them mto a JEDEC-standald t

hecks the fuse map that the absembler
es. By uemg the slmuldtor s mteractlve

3-19

An interrupt-handling preprocessor can off-
load some of the initinl interrupt-recogni-
tion tasks of your system’s intevrupt-han-
dler module. :

Once the assertion of the DTACK signal indicates the
successful transfer of the 8-bit status or identification
byte, the IHP instructs the interrupt-handler module
to begin the interrupt-service routine. This instruction
from the IHP is logically defined as follows:

IF (BBSY*LATCH_STATUS + BBSY* (5)
START_SERVICE*/SERVICE_DONE) THEN
START_SERVICE : = 1;

This definition states that the IHP constantly asserts
the START_SERVICE signal until the interrupt han-
dler generates a SERVICE_DONE signal, at which
point the THP drives START_SERVICE low. The logic
described above generates the timing diagram shown in
Fig 5.

Development tools simplify controller design
Development tools provided by FPC and PLD manu-
facturers simplify the task of programming these de-
vices as VME Bus controllers. Once you’ve analyzed the
bus protocols and converted these into state-machine
diagrams, you can write assembly-language programs
and high-level logic equations to describe the state
machines. The assembler and logic software will then
process these programs and equations to fit into the
FPC or PLD. For a summary of the programming tools
available for the Am29PL141 FPC, see box, “Develop-
ment tools help you program FPCs.” EDN

Author’s biography

Arthur Khu, a product planning engi-
neer for Advanced Micro Devices
(Sunnyvale, CA), is responsible for re-
search and definition of advanced pro-
grammable-logic-device architectures.
He holds a BS in Math/Computer Sci-
ence and an MS in Computer Science
from Santa Clara University. In his
spare time, Art enjoys racquetball and
astronomy.

3-20

CHAPTER 4
COFFEE MACHINE CONTROLLER USING Am29PL141"

This section is a tutorial to show designers how to
go from a design requirement to Am29PL141
microcode. The coffee machine application was
chosen because it is easy to understand.

The following example describes the hardware and
the programming required. A flow diagram of the
program is included. The assembler program for
the coffee vending machine example is called
COFFEE.EXP. The PL14x assembler produces
two outputs, the JEDEC fuse map output file
(COFFEE.JED) and the PROM bit pattern output
file (COFFEE.BIT). First, the problem is defined.

The coffee machine controller waits for a coin
before dispensing the beverage selected by the
customer. The choices are indicated as
combinations of buttons.

Design requirement:

Design a coffee machine controller that works as
follows:

-

Do nothing until a coin is detected.

2. On coin detection turn on busy light and wait
for selection: .
i. coffee
ii. chocolate
ii. soup
iv. coinreturn
3. If coin return is detected, return coin, turn off
busy light and wait for next coin.
4. If coffee, chocolate or soup is detected, drop
acup.
5. The cup has 1.5 seconds to get into place.
6. Turn on water for 1 second prior to release of
powders.
7. Water will remain on continuously for a total of
10 seconds.
8. Busy light will remain on until end of
sequence.
9. Depending on selection, either coffee, soup
or chocolate will be dispensed:
coffee 2.5 seconds
soup 2.0seconds
chocolate 3.5 seconds

10. If coffee was selected, check to see if cream
and/or sugar are selected. If yes, cream 2.0
seconds, sugar 1.5 seconds.

After water has completed filling the cup, allow
3.5 seconds for cup removal before testing for
presence of next coin.

12. Clock rate is 10 Hz.

11.

As can be seen, there are six possible beverages:

i. coffeeblack
ii. coffee with sugar
iii. coffeewithcream
iv. coffee with cream and sugar
v. chocolate
vi. soup

The conditions that need to be tested are:

i. coindrop
i. coffee
ii. cream
iv. sugar
v. chocolate
vi. soup
vii. return (coin return)

Control signals that need to be generated from the
controller are:

i. busy lighton (busy)

cup drop (cup)

wateron (water)

coffee on (coffee)
creamon (cream)
sugar on (sugar)
chocolate on (choclat)
soup on (soup)

coin return (coin_return)
clear inputs (clr_inp)

Vi.
vii.
Vi
ix.

X.

Figure 4-1 represents the hardware required for
the controller. . The inputs need to be synchro-
nized and latched, hence the PAL device (16R8).
Once latched, the clr_inp signal from the
AM29PL141 clears the external registers within
the PAL at the end of each sequence. The
Am29PL141 has seven external test inputs.
These are used to test the seven conditions.
Since all but one of the Am29PL141 instructions
are conditional, unconditional jumps must be
implemented by a forced pass’. The ‘EQ’ flag
internal to the Am29PL141 is a test condition not

4-1

being used in this design. It can therefore be used
to allow ‘unconditional’ instructions. The state of
the ‘EQ’ flag is always known since it is unused for
any other purpose. (The ‘EQ’ flag is cleared on
reset.)

Figure 4-2, the flow diagram for the program,
describes the logical flow of events required by the
design. The rectangular boxes in the flow diagram
show the value of the control field for that state.
The diamond shaped boxes imply a -conditional
test to decide the next state. A pair of rectangular
and diamond shaped boxes indicate‘a conditional
microcode line. A rectangular box not followed by
a diamond shaped box implies that the instruction
is a continue or an unconditional branch.

The Am29PL141 is used to develop the micro-

 code.

Figure 4-3 is a listing of the assembler
source code used. It is assumed that the reader is
familiar with the PL14x assembler supplied by
Advanced Micro Devices. Note that all timing is in
0.5 second increments. At 10 Hz, 0.5 second
corresponds to 5 clocks.

Each box in the flow diagram can be directly
translated into one or more lines of ‘microcode.
One important convention needs to be
remembered. Each microcode line specifies the
state of the control outputs and the branch
address for the next instruction. Hence in the flow
diagram, the decision box follows the output field
box. The flow diagram indicates the microcode line
numbers corresponding to each box.

10 Hz
CLK ' po |—#Busy
Coin__LD b Qa L] coin To
Dro
P B P1 —»Cup
CLR
.y
Soup-
Soup_l__):> ; @ Test | 11 P2 |—» Water
c'{n] P3 |—»Coffe
e
Choc-
Chocolate_l__D D Q Tecsg T2
P
CLR P4 |—»Cream
1
l -
cream _|) > 1 Cream: | 1, o
jg P5 —Sugar
CLR
|
Sugar-)
Sugar_b b Q Test | 14 P6 —Chocolate
-
CLR
I I P7 —Soup
Coffee _l_‘D ; Gj--Coffee- 1
8 Coin
CLR P8 —"Return
|
| 1 -
Coin
Heturn_b_\/ o Q TReturn| €€ PO Cleds
-+ Inputs
CLR
16R8 Am29PL141

Figure 4-1. Coffee Machine Hardware

06591A 4-1

42

06591A 4-2

Sub

44,45 l

Busy
1.5sec

46,47 l

Busy,Water
1sec

48 l

Busy

Return

'

NO

Busy

NO

Busy

NO

YES
B D
YES
tC >
6
Busy,
YES CoinRet
Clr-inputs

Figure 4-2. Coffea Machine Program Flow Diagram (Sheet 1 of 2)

4-3

1

12

8 28 33
Cupdrop,Busy Cupdrop,Busy Cupdrop,Busy
CallSub CallSub CallSub
9,10 l 29, 30 l 34, 35 l
Busy,Water, Busy,Water, Busy,Water,
Coffee 2.5sec Choc. 3.5sec Soup 2sec
36, 37 l
Busy,Water,
6sec

Busy,Water

Busy,Water,

Sugar 1.5sec

15,16, 17 202
P YES Busy,Water,
Cream Cream 2.0 sec
Busy,Water ?
24, 25 NO
Busy,Water, v
Cream 2.0 sec
13,14,18,19,22,23, 26,27,31,32,38,39,40
Busy,Water,
Total 10sec
41,42,43
Busy 3.5sec
Clearinputs
06591A 4-2b

Figure 4-2. Coffee Machine Program Flow Diagram (Sheet 2 of 2)

4-4

Special care needs to be taken to ensure that
water is on continuously for 10 seconds. Six
possible paths lead to the microcode line labeled
“last”. At the end of each of these paths, the
CREG is loaded with a value equal to 10 seconds
minus the time in seconds for which water has
already been on. Note that the value loaded into
the CREG is one less than the expected value.
This is because the value 0 in the CREG needs to
be accounted for as the Am29PL141 checks the
CREG and then decrements.

For example, coffee needs to be turned on for 2.5
seconds if selected. At 10 Hz, this translates into
25 clock periods. Coffee is on for one clock period
during the instruction when the counter (CREG) is
loaded with a countdown value (line 9 of the
microcode). The counter therefore needs to be
loaded with a countdown value of 23 which
corresponds to coffee being on for 24 clock
periods before the counter counts down to zero.
The total time for which coffee is on is therefore
24 + 1 =25 clock periods or 2.5 seconds.

On reset, the ‘EQ’ flag is cleared. For a ‘pass’ to
occur, the flag must, therefore, be tested for a ‘0'.
Hence the ‘not fail' in each of the unconditional
microcode lines instead of the more obvious
‘pass’. Also on reset, the Am29PL141 executes
the instruction on line 63. In this example, this line
is an unconditional branch to line 1 of microcode.
This is a wasted microcode line. If efficient coding
is required to preserve microcode lines, the coin
test on line 1 of the microcode could be placed on
line 63 thus saving one line of microcode.

To assemble this file, type:

A> ASM14x -i COFFEE.EXP -o COFFEE.JED -b
COFFEE.BIT

When the file COFFEE.EXP is assembled, two
output files are created, COFFEE.JED and
COFFEE.BIT. The JEDEC fuse map output is sent
to the file COFFEE.JED (Figure 4-4). The PROM
bit pattern is sent to the file COFFEE.BIT. See
Figure 4-5 for a listing of this file.

DEVICE (PL141)

DEFAULT = 1 ;

DEFINE "test inputs are given name assignments"

coin = t0
soup_test = tl
choc_test = t2
cream_test = t3
sugar_test = t4
coffee_test = t5

coin_ret = cc
fail = eq

"output/control bits are given name assignments"

off = 0O#h
busy = 0l#h
cup = 02#h
water = 04#h
coffee = 08#h
cream = 10%h

sugar = 20#h
choclat = 40#h
soup = 80#h
cn_ret = 100#h
clr_inp = 200#h;

BEGIN

"wait for a coin to drop and check selection after coin detect"

"i" zero:off, if (not coin) then goto pl(zero):

nan clr_inp, continue;

"3" test:busy, if (coffee_test) then goto pl(cofe);
ngn busy, if (choc_test) then goto pl(choc);
ngn busy, if (soup_test) then goto pl(sup);

wen busy, if (not coin_ret) then goto pl(test):
nu busy + cn_ret + clr_inp,if (not fail) then goto pl(zero):

Figure 4-3. Coffee Machine Source Program Listing (Sheet 1 of 2)

"routine for coffee. Check for sugar &/or cream"

"g" cofe:busy +

ngn busy +
"l0"sty2:busy +
"1l busy +
Sy busy +
"3 busy +
"ig" busy +

cup,

coffee + water,
coffee + water,
water,

water,

water,

water,

"routine for sugar"

"15"sugr:busy +
"lé"sty4:busy +

wi7n busy +
"ig" busy +
"ign busy +

sugar + water,
sugar + water,
sugar + water,
water,
water,

if (not fail) then call pl(sub);

if (not fail) then load pl(23):;
while (creg <> 0) loop to pl(sty2):
if (sugar_test) then goto pl(sugr):;
if (cream_test) then goto pl(cren);
if (not fail) then load pl(60):

if (not fail) then goto pl(last);

if (not fail) then load pl(12);
while(creg <> Q) loop to pl(sty4):
if (cream_test) then goto pl(crm2):
if (not fail) then load pl(46):;

if (not fail) then goto pl(last):

"routine for cream if sugar is selected"

"20"crm2:busy +
"21"sty5:busy +
naan busy +
"a3n busy +

cream + water,
cream + water,
water,
water,

if (not fail) then load pl(18):
while (creg <> 0) loop to pl(sty5):
if (not fail) then load pl(26);

if (not fail) then goto pl(last):

"routine for cream if sugar is not selected"

"24"crem:busy +
"25"sty6:busy +
"2e6" busy +
na27n busy +

cream + water,
cream + water,
water,
water,

if (not fail) then load pl(18):
while (creg <> 0) loop to pl(stysé):
if (not fail) then load pl(40):

if (not fail) then goto pl(last);

"routine for dispensing chocolate"

"28"choc:busy +
nagn busy +
"30"sty7:busy +
"3n busy +
n3a2n busy +

cup,

if (not fail) then call pl(sub);

choclat + water, if (not fail) then load pl(33);
choclat + water, while (creg <> 0) loop to pl(sty7):

water,
water,

"routine for dispensing soup"

"33"sup: busy +
"34n busy +
"35"sty8:busy +
"3e" busy +
"37"sty9:busy +
"3g" busy +
"3gn busy +

cup,

soup + water,
soup + water,
water,

water,

water,

water,

if (not fail) then load pl(52):
if (not fail) then goto pl(last);

if (not fail) then call pl(sub):

if (not fail) then load pl(18):
while (creg <> 0) loop to pl(stys8):
if (not fail) then load pl(58):
while (creg <> 0) loop to pl(sty9):;
if (not fail) then load pl(07);

if (not fail) then goto pl(last):

"routine for finishing 10 sec water and wait for cup removal"

"40"last:busy +
"4l busy,
"42"sty3:busy,
43" busy +

"routine for waiting for

"44"sub: busy,
"45"stay:busy,

water,

clr_inp,

"46" busy + water,

"47"styl:busy + water,

48" busy + water,
.org 63#d

"qon clr_inp,

end.

while (creg <> 0) loop to pl(last):
if (not fail) then load pl(32):;
while (creg <> 0) loop to pl(sty3):
if (not fail) then goto pl(zero);

cup to be in place and 1 sec. water"

if (not fail) then load pl(13);
while (creg <> 0) loop to pl(stay):
if (not fail) then load pl(7):
while (creg <> 0) loop to pl(styl):
if (not fail) then ret:;

if(not fail) then goto pl(zero):

Figure 4-3. Coffee Machine Source Program Listing (Sheet 2 of 2)

46

FO*
L0000
L0032
L0064
Lo09%6
L0128
L0160
L0192
L0224
L0256
L0288
L0320
L0352
L0384
L0416
L0448
L0480
L0512
L0544
L0576
Loe0s8
L0640
L0672
L0704
L0736
L0768
L0800
Los32
L0864
L0896
L0928
L0960
L0992
L1024
L1056
L1ioss
L1120
L1152
L1184
L1216
L1248
L1280
L1312
L1344
L1376
L1408
L1440
L1472
L1504
L2016
C6706*
9F58

0000000000000 0000D00O0000D0D0CO0DO00D0O0D0DO0OO0DO0DO00DO0DO0DO0DO0OO0DO0OO0OO0OO0O0OO0OO

00110
10010
00110
00110
00110
00110
00110
00011
11011
10111
00110
00110
11011
00110
11011
10111
00110
11011
00110
11011
10111
11011
00110
11011
10111
11011
00110
00011
11011
10111
11011
00110
00011
11011
10111
11011
10111
11011
00110
10111
11011
10111
00110
11011
10111
11011
10111
11101
00110

0000000000000 O0000D0DO0O0O0DO00DO0OO0D0DO0O0O0OO0OO0OOHOOOOHHOOOOOHHFFOO

111
000
0lo0
101
110
001
000
000
000
000
011
100
000
000
000
000
100
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

111111
000000
111000
100100
011111
111101
111111
010100
101000
110110
110001
101000
000011
011000
110011
110000
101100
010001
011000
101101
101011
100101
011000
101101
100111
010111
011000
010100
0l1l1ll0
100010
001011
011000
010100
101101
011101
000101
011011
111000
011000
011000
011111
010110
111111
110010
010011
111000
010001
000000
111111

1111111111111111
1111110111111111
1111111111111110
1111111111111110
1111111111111110
1111111111111110
1111110011111110
1111111111111100
1111111111110010
1111111111110010
1111111111111010
1111111111111010
1111111111111010
1111111111111010
1111111111011010
1111111111011010
1111111111011010
1111111111111010
1111111111111010
1111111111101010
1111111111101010
1111111111111010
1111111111111010
1111111111101010
1111111111101010
1111111111111010
1111111111111010
1111111111111100
1111111110111010
1111111110111010
1111111111111010
1111111111111010
1111111111111100
1111111101111010
1111111101111010
1111111111111010
1111111111111010
1111111111111010
1111111111111010
1111111111111010
1111111111111110
1111111111111110
1111110111111110
1111111111111110
1111111111111110
1111111111111010
1111111111111010
1111111111111010
1111110111111111

Figure 4-4. JEDEC Fuse MAP for Coffee Machine Program

B % % % % o ¥ % 3 o o ok 3k % 3k % ¥ o % ¥ S % N N N N N N O N N N ¥ ¥ ¥ ¥ F ¥ F F ¥ ¥ ¥ ¥ * ¥ ¥ ¥ ¥

47

hex <dec> OE OPCODE POL TEST DATA OUTPUT
000 < 0> [1] 11001 | 1 | 000 | 000000 | 0000000000000000]
001 < 1> [1] 01101 | 1 | 111 | 111111 | 0000001000000000]
002 < 2> [1] 11001 | O | 101 | 000111l | 0000000000000001]
003 < 3> [1] 11001 | O | 010 | 011011 | 0000000000000001]
004 < 4> [1| 11001 | O | 001 | 100000 | 0000000000000001)
005 < 5> [1] 11001 | 1 | 110 | 000010 | 0000000000000001]
006 < 6> [1 | 11001 | 1 | 111 | 000000 | 0000001100000001]
007 < 7> (1) 11100 | 1 | 111 | 101011 | 0000000000000011)
008 < 8> [1) 00100 | 1 | 111 | 010111l | 0000000000001101]
009 < 9> [1| 01000 | 1 |- 111 | 001001 | 0000000000001101]
O0A < 10> [1] 11001 | 0.] .100 | 001110 | 0000000000000101]
00B < 11> { 1] 11001 | O | 011 | 010111l | 0000000000000101]
00C < 12> [1] 00100 | 1 | 111 | 111100 | 0000000000000101]
00D < 13> [1 | 11001 | 1 | 111 | 10011l | 0000000000000101]
00E < 14> [1] 00100 | 1 | 111 | 001100 | 0000000000100101]
OOF < 15> [1] 01000 | 1 | 111 | 001111 | 0000000000100101]
010 < 16> [1 | 11001 | O | 01l | 01001l | 0000000000100101]
011 < 17> [1 | 00100 | 1 | 111 | 101110 | 0000000000000101]
012 < 18> [1} 11001 | 1 | 111 | 100111 | 0000000000000101 }
013 < 19> [1 | 00100 | 1 | 111 | 010010 | 0000000000010101]
014 < 20> [1] 01000 | 1 | 111 | 010100 | 0000000000010101)
015 < 21> [1] 00100 | 1 | 111 | 011010 | 0000000000000101)
016 < 22> {1 | 11001 | 1 | 111 | 100111 | 0000000000000101]
017 < 23> [1] 00100 | 1 | 111 | 010010 | 0000000000010101]
018 < 24> [1 | 01000 | 1 | 111 | 011000 | 0000000000010101]
019 < 25> [1] 00100 | 1 | 111 | 101000 | 0000000000000101]
0l1A < 26> [1 | 11001 | 1 | 111 | 100111 | 0000000000000101]
01B < 27> {1 11100 | 1 | 111 | 101011 | 0000000000000011]
01C < 28> [1 | 00100 | 1 | 111 | 100001 | 0000000001000101]
01D < 29> [1] 01000 | 1 | 111 | 011101 | 0000000001000101]
0lE < 30> [1] 00100 | 1 | 111 | 110100 | 0000000000000101)
0lF < 31> {1 11001 | 1 | 111 | 100111 | 0000000000000101)
020 < 32> [1 | 11100 | 1 | ‘111 | 101011 | 0000000000000011]
021 < 33> [1] 00100 | 1 | 111 | 010010 | 0000000010000101)
022 < 34> (1] 01000 | 1 | 111 | 100010 | 0000000010000101]
023 < 35> { 1] 00100 | 1 | 111 | 111010 | 0000000000000101]
024 < 36> [1| 01000 | 1 | 111 | 100100 | 0000000000000101]
025 < 37> [1] 00100 | 1 | 111 | 000111 | 0000000000000101)
026 < 38> {1 11001 | 1 | 111 | 100111 | 0000000000000101)
027 < 39> [1] 01000 | 1 | 111 | 100111 | 0000000000000101)
028 < 40> (1| 00100 { 1 | 111 | 100000 | 0000000000000001]}
029 < 41> [1 | 01000 | 1 | 111.| 101001 | 0000000000000001]
02A < 42> {1} 11001 | 1 | 111 | 000000 | 0000001000000001]
02B < 43> [1 | 00100 | 1 | 111 | 001101 | 0000000000000001)
02C < 44> [1] 01000 | 1 | 111 | 101100 | 0000000000000001]
02D < 45> {1 00100 | 1 | 111 | 000111 | 0000000000000101]
02E < 46> [1 | 01000 | 1 | 111 | 101110 | 0000000000000101]
02F < 47> [1} 00010 | 1 | 111 | 111111 | 0000000000000101]
03F < 63> [1 | 11001 | 1 | 111 | 000000 | 0000001000000000]
Where:
Oe = Synchronous output enable for P[15:8]
OPCODE = Five-bit field for selecting one of the 29
microinstructions
POL = Test condition polarity select field
0 = Test for true (HIGH) condition
1 = Test for false (LOW) condition
TEST = Binary value of input line to be tested
Value Input condition Value Input Condition
000 TO 100 T4
001 Tl 101 TS
0l0 T2 110 cC
011 T3 111 EQ
DATA = 6-bit conditional branch microaddress, test input mask,
or counter value field designated as PL in
microinstruction mnemonics (P[21:16])
Output = 16-bit user output control signals (P[15:0])

Figure 4-5. PROM File for Coffee Machine Application

4-8

CHAPTER 5

DEC PDP-11 UNIBUS CONTROLLER

5.1 THE DESIGN PROBLEM

This paper discusses the use of the Am29PL141
Fuse Programmable Controller (FPC) as a DEC
PDP-11 Unibus interface controller.

Designing an interface for the Unibus is typical of
the problems which can be readily solved using
the Am29PL141 FPC. The complexity of Unibus
handshaking is such that microprogramming is a
reasonable design technique, but use of a
separate sequencer, control memory, and pipeline
register is not economical. Since the FPC contains
a sequencer, memory, and pipeline, it fits this class
of problem rather well. The PDP-11 was chosen for
this example because it has a well documented
protocol which is familiar to many engineers. An
overview of the Unibus is included.

The problem this application note solves is to:

Design an interface between the Unibus and a
generic 1/O device to allow the . following
operations:

o Interface to handle all Unibus protocol for
o DATI/DATO with device as slave

« Device BR (interrupt)

o Device NPR (direct memory access)

o DATI/DATO with device as master
Interface to handle synchronous
transfers with device

parallel

5.2 DEC UNIBUS OVERVIEW

The DEC PDP-11 Unibus is an asynchronous bus
which supports programmed /O, prioritized
interrupts, and Direct Memory Access (DMA) in a
memory mapped I/O environment. All bus transfers
are between a bus master and bus slave, and are
controlled by the master. A bus arbitrator grants
bus mastership to requesting devices.

The six basic types of transfers allowed are:

DATO - worddatatransferfrom masterto
slave

DATOB - byte data transfer from masterto
slave

DATI - worddatatransferfromslave to
master

DATIP - worddatatransferslave to master,
inhibit restore cycle

NPR — Non Processor Request.
DMA device wants to become bus
master.

BRi — BusRequest. Interrupt request at

leveli(4,5,6,0r7).

The following control signals are used during
transfers:

MSYN master sync—timing control
SSYN slave sync—timing control
C0,C1 datatransfertype

BRi interrupt bus request level i

BGi interrupt bus grant level i (note 1)
INTR interrupt vector strobe

NPR DMA bus request

NPG DMA bus grant (note 1)

SACK select acknowledge

BBSY busbusy

Note 1: These signals are daisy chained to form

a physical priority level at each separate
logical priority level (npg, bg4, bg5, bg6,
bg7).

5.3 INTERFACE HARDWARE DESIGN

As shown in Figure 5-1, the architecture chosen
for this interface consists of three main sections—
Unibus signal buffering, address decoding, and
control logic. Data, address, and control signal
buffers provide proper Unibus levels and are
implemented using DS8641 Quad Unified Bus
Transceivers. The address decoder detects
whether the device is addressed as a slave or
master during Unibus DATI and DATO transfers,
and is best implemented using Am29806
decoders. The control logic is a microprogrammed
state machine which handles both Unibus and
device handshaking.

The heart of the control logic is the Am29PL141
Fuse Programmable Controller. Its user-defined
microprogram implements a state machine which
handles both device and Unibus handshaking.
Test inputs are synchronized with the FPC clock
using an AM29821A 10-bit register. Five of these
inputs go directly to the FPC, while the other five
go through a multiplexer which expands the FPC
conditional test capability from seven to fourteen
signals. Two D flip-flops and OR gates are used to

DEVICE

DATA/
VECTOR

DATA

ADDRESS

ENABLES

WRITE
INTREQ
DMAREQ

CP(15MHz)

RESET
CP(15MHz)
DATAIN

CMPLT
ERROR

Figure 5-1. Unibus Interface Block Ijiagram

INTERFACE UNIBUS
(4) DSB641
) TRANSCEIVER
18, IN 16
. BUS o————————4———»# DATA
S, o ouT
ENA
FROM DATA OUT
18,
7
(5) DS8641
TRANSCEIVER|
AmM20806/9 N "
e .DECODER BUS jop————————>4————81 ADDRESS
l————A————] E A j¢&—— ouT
— ENA
DATXREQ AE
ENA ?
FROM ADDROUT
3 (3) DS8641
- TRANSCEIVER
MSYN _MSYN
SSYN out
BBg\zl BUS o———<1% ol CONTROLSIGNALS
Ao NG| L6 N o]
8G ENA BBSY
C1
D D _ 1% SACK
Am29821A ENA ﬁ'ﬁg
>cu< REGISTER ~ __ BR
OE NPGOUT EZG
y Y BGOUT
DATxggg c1
DMAI
INTREQ 1’5 15 74Faz
WRITE
D 2 74F74
—MC 74F251A —r D a
L—» NPG,BG S
L — B MSYN cp —
MUX sy
s |/BBSY
45V 1 NPG
| 8G
‘15 T[4:0] —— ——
_cc 4] DATAOUT ADDROUT
»q RESET
Am20PL141 ZERO |— N.C.
D CLK
: P[15:0)
3}« "y 24«
3, 8, 8¢ 2,
7 7 NPR,BR
06531A 5-1

5-2

implement the Unibus request/grant handshaking.
Because the clock period must be at least 64.5 ns,
a clock frequency of 15 MHz is appropriate (66.6
ns). A detailed control logic timing analysis is
shown in Figure 5-2.

5.4 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 5-3. The 32-bit
microword is subdivided into fields of various sizes
and functions. The 16 most significant bits are
used during next address generation within the
FPC, while the lower 16 bits are tailored to the
application.

OE is a synchronous output enable for output bits
15 through 8. The 5-bit OPCODE field contains
the FPC next address instruction.

POL controls polarity of the test condition selected

by the 3-bit TEST field.

DATA is a 6-bit address, test mask, or counter
value; depending on the OPCODE used.

ERROR is an interface timeout indication to the
peripheral device.

AUX TEST is a 3-bit field which controls the
external multiplexer for additional test inputs. The
TEST field must have a value of 5 to use the test
selected by AUX TEST.

The 12 COMMAND outputs are single bit control
signals. ADDROUT and DATAOUT enable Unibus
address and data buffers. DATAIN clocks Unibus
data into peripheral device registers. COMPLT
indicates to the device that an interrupt or DMA
operation has been completed. The remaining
outputs are Unibus control signals described in
Section 5.2.

&

Am29PL141 Am29821A
CLK~OUTPUT CLK - OUTPUT
15 105
74F251A 74F251A Am29PL141
C,B,A-Y - MIN. CLK
95 8 50
(T5 STABLE)
Am29PL141
* TESTSETUP
40

@

MINIMUM CLOCK PERIOD = 15 +9.5 + 40 =64.5 s

06591A 5-2

Figure 5-2. Control Logic Timing

Microword Forma

t:

: 31 : 30 -26 : 25 : 24,23,22 : 21 - 16 : 15 : 14,13,12 : 11 - 0 :
: oe opcode : pol : test : data : error : aux tst : command :
oe: output enable
(31)
opcode: 29PL141 command
(30-26) 00 - RETPL 08 - LPPL 10 - CMP 18 - FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET OA - LPPLN 12 - CMP 1A - WAIT
03 - RETN 0B - GOTOPLZ 13 - CMP 1B - DECGO/C
04 - LDPL 0C - DECAL 14 - PSHPL 1C - CALPL
05 - LDPLN 0D - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - DECTM 16 — PSHTM 1E - CALTM
07 - LDTMN OF - GOTOTM 17 - PSHN 1F - CALTMN
pol: test polarity (1 = negate)
(25)
test: conditional test input select
(24,23,22) 0 - msyn 4 - npg
1 - ssyn 5 - aux tests
2 - bbsy 6 - pass
3 - bg 7 - equal flag
data: branch address, test input mask, or counter load value
(21-16)
error: timeout error indication to device
(15)
aux test: additional test inputs when test = 5

(14,13,12)

command:
(11-0)

: 11 : 10
: addr : data

¢ out : out

0 - datxreq 4 - cl

1 - dmareq 5 - spare
2 - intreq 6 - spare
3 - write 7 - spare

s 9 : 8 : 7 : 6 : 5 : 4 : 3 2 1
: data : com : cl intr : br : npr : sack : bbsy : ssyn
: in : plt @ : : : : : :

Figure 5-3. Microword Organization

06591A 6-3

5-4

5.5 UNIBUS CONTROLLER MICROCODE

Two things always happen during execution of a
microinstruction—the address of the next
microinstruction is determined using the
OPCODE, POLARITY, TEST, and DATA fields;
while concurrently, the Unibus and device
interfaces are controlled by signals from the
COMMAND field.

The microcode which controls the FPC was written
using the Am29PL141 assembler available from
AMD. The mnemonics used in the source code are
shown in Figure 5-4. Note that these definitions
are consistent with the microword definition of
Figure 5-3. Figure 5-4 also contains the source
code for the FPC. Figure 5-5 shows the FPC
PROM contents. Note that one line of source
generates one PROM word. The general source
formatiis:

<FPC
""comment"

<label>: <outputs>,

instruction>;

Outputs may be either mnemonic or constants,
and may be logically “ANDed” or “ORed” together.
The FPC assembler instructions are included in
Chapter 2. The following paragraphs describe the
code written for this FPC application. It is helpful to
refer to the microcode source. program listing
(Figure 5-4) and the timing diagrams (Figures 5-6,
5-7,5-8,and 5-9).

After reset to address 63, the program branches to
address 0 (label TOP) and loops until one of the
external conditions DATXREQ, DMAREQ, or
INTREQ is asserted. For example, at TOP, if
auxiliary test condition DATXREQ is asserted, the

subroutine DATX is called. Otherwise, the next
sequential instruction is executed.

DATXREQ true indicates that a Unibus master has
initiated a DATO or DATI transfer with the interface
and causes a branch to the subroutine at label
DATX, with the return address being saved in the
FPC SREG. Unibus signal C1 is tested to deter-
mine direction, and then a DATO or DATI slave
sequence is completed beginning at label DATO
or DATI. At DATI, Unibus signal SSYN is asserted
and data gated onto the Unibus using DATAOUT,
until test MSYN is negated. The next instruction
has no control signals asserted (OFF), and returns
from the subroutine by branching to the address
saved in SREG. DATO processing is similar.

DMAREQ indicates that the device is requesting a
Direct Memory Access cycle, which causes a
branch to label NPRX. The program waits at NPRX
untit NPG is de-asserted. NPR is then asserted and
the program loops at NPR1 untii NPG is
reasserted. SACK is asserted, and the program
loops at NPR2 until the three signals NPG, BBSY,
and SSYN are unasserted. Note how the compare
instruction masks the test inputs with the constant
NPG_BBSY_SSYN and compares the result to 0.
This allows concurrent testing of three inputs in
only two microcycles. BBSY is asserted, making
the interface bus master, and WRITE is tested to
determine DMA direction. If a DATI cycle is to
occur, we fall through to NPRDATI.

Front-end 150 ns de-skewing is done at NPRDATI
and WAIT1, concurrent with loading the FPC
CREG with 31 hex for a 15 microsecond slave
timeout. WAIT2 is the top of the timeout loop. If the
slave Unibus device asserts SSYN within 15
microseconds, the program branches to pass1 for
tail-end 75 ns de-skew. Otherwise it falls through
to the error exit at ERROR1. DATO processing is
similar to DATI, and begins at NPRDATO.

INTREQ is asserted when the device wants to
interrupt the Unibus CPU, causing execution to
continue at INTRO. Interrupt request/grant
processing occurs at INTRO and INTR1. SACK is
then asserted and the program loops at INTR2 until
BG, BBSY, and SSYN are unasserted. The device
supplied interrupt vector is gated onto the Unibus
data lines at INTR3, and the interrupt handshake is
finished at WAITO.

5.6 CONCLUSION

One of the advantages of microprogrammed
design is that it is relatively easy to change. In this
application, Unibus DATOB and DATIP transfers
were not differentiated from DATO and DATI trans-
fers. This could be easily accommodated by modi-
fying the DATX microcode to test Unibus signal C1
by adding a few words of additional code. Another
change to be considered is to change the device
interface to a less rudimentary protocol. Additional
control signals could be provided by adding a
decoder at the FPC output, and encoding eight
signals using only 3 microword bits. Spare
multiplexer inputs could be used for additional
device status lines. Additional control signals can
also be provided by adding another FPC.

5-5

" Unibus Controller microcode using Am29PL141 assembler o
" Version 1.2 R. Purvis, 19 December 85 "

device (PL141
default = 1 ;

define

o #kkkkkkkk* DEFINITION OF TEST INPUTS kkkikdkkkkk 1
tmsyn = t0 " test Unibus signal MSYN "
tssyn = tl " SSYN "
tbbsy = t2 " BBSY "
tbg = t3 " BG "
tnpg = t4 " NPG "
aux = t5 " auxiliary test conditions "
pass = cc " unconditional pass "
bg_bbsy_ssyn = Oet#h " test mask "
npg_bbsy_ ssyn = 16#h " test mask "

" kkkkkkkkkx DEFINITION OF OUTPUTS ‘hhkkdkkhkddkdkhkkk 1

" AUXILIARY TEST CONDITIONS "

datxreq = 0000#h " Unibus DATI or DATO request "
dmareq = 1000#h " device DMA request "
intreq = 2000#h " device Interrupt request "
write = 3000%h " device write request "
tcl = 4000#h " Unibus signal cl "

" aux tests 5 - 7 are unused "

" CONTROL SIGNALS "

off = 0000#h " no signals active "
error = 8000#h " error flag to device "
addr = 0800#h " gate address onto Unibus "
dataout = 0400#h " gate data onto Unibus "
datain = 0200#h " strobe data in from Unibus "
complt = 0100#h " complete flag to device "
cl = 0080#h " assert Unibus signal C1 "
intr = 0040#h " INTR "
br = 0020#h " BR "
npr = 0010#h " NPR "
sack = 0008#h " SACK "
bbsy = 0004#h " BBSY "
ssyn = 0002#h " SSYN "
msyn = 0001#h ; " MSYN "
test_condition = cc; " default test condition "
begin " dede dede de e e e de e de e ek ok Source Code e e e e e o e e e ok ok e ek "

" Unibus Controller V1.2 "

" ddkkhkdkdkdkdkdehhhhhhhkhdhhkhhhhhhhkkhhhhdkdhhhrhkhkhkhkdkdkdkdhhhhdhdhdhhdhdd "
" * MAIN LOOP '~ Loop at TOP until external condition "

" * DATXREQ, DMAREQ, or INTREQ is true. "
" dekdedekdhkdhdedhhhhkhhhhhhhkhhhkdhhhdkhhhhhhhhhhkdhhdkdhhhhhdhkdhhddhkdk "

top: datxreq, if (aux) call pl(datx):
dmareq, if (aux) call pl(nprx):
intreq, if (not aux) goto pl(top):

" e Je % e e Je e e e e ok e e o e ok e e e e ke o e e o ok ok ok o ok ko e ok ok e e ol ok e ok e o ok ok e ok o e e o ke e e e ke ke e ke "

" * INTERRUPT SERVICE ROUTINE - Device interrupt service "
" * request. Perform Unibus interrupt handshake. "
" Rdkdkdkhhhhhhhhhhkkhhkhhhkhhkhhhhhhhhhhhhhhhkhkhhhdkhhhhhhkkhhkhkhkhhhhkk "

Figure 5-4. Unibus Controller Source Program Listing (Sheet 1 of 2)

5-6

intro: off, if (tbg) goto pl (intro); " request/grant handshake "

intrl: br, if (not tbg) goto pl(intrl):
br + sack, continue;
intr2: br + sack, cmp tm(bg_bbsy ssyn) to pl(0);
br + sack, if (not eq) goto pl(intr2);
intr3: sack + bbsy + intr + dataout, continue; " interrupt vector "
waito: bbsy + intr + dataout, if (not tssyn) goto pl(waito);

complt, goto pl(top):

" s o ke e de ek dede e de ok e ok ok o ok o ok ok ok ot ok ok ok o e o ok ko ke e ok ok ok o ok o o ek e ok ok ok o "
" * PROGRAMMED I/O ROUTINE - Unibus master accessing "

" * device. Perform Unibus DATO/DATI handshake. "
" % Je ok ok ok Kk e K ok e K o e ok g ok ek ok ok o ok ok ok e ok ke e ok ke ok ek ek e e ok e ok ok ok ok ke ok ok ok ek ok ok ke "

datx: tcl, if (aux) goto pl(dato):

dati: ssyn + dataout, if (tmsyn) goto pl(dati):; " unibus slave DATI "
off, ret;

dato: ssyn + datain, if (tmsyn) goto pl(dato): " unibus slave DATO "
off, ret;

" o e e e e e e e v o o v b v vk o vk o e e o e ok ok o ok ok dk ok ke dk ke ke e Sk e o o ok ok ok ok e e e e e ok e ok ke ok ke ok ke ke ke ok ke "
" * DMA SERVICE ROUTINE - Device DMA service request. "

" * Perform Unibus DMA handshake. "
" 3 d o ok & ok e o e o ok ek ok ok ok ok e ok ok ok ok ok e ok ok ok ok ok ok o e ok ke ke Ok e o ok ok ok ok ok ok ke ok ok ok o ok ok ok ok ok ke ok ke ok "

nprx: off, if (tnpg) goto pl(nprx): " request/grant handshake "
nprl: npr, if (not tnpg) goto pl(nprl):

npr + sack, continue;
npr2: npr + sack, cmp tm(npg_bbsy ssyn) to pl(0);

npr + sack, if (not eq) goto pl(npr2):;

bbsy + write, if (aux) goto pl(nprdato):; " bus master now "

" DMA READ ROUTINE (unibus master DATI) "

nprdati: bbsy + addr, load pl(3l#h);

waitl: bbsy + addr, if (tssyn) goto pl(waitl):

wait2: ~ bbsy + addr + msyn, if (tssyn) goto pl(passl): " 15 us "
bbsy + addr + msyn, if (tssyn) goto pl(passl); " timeout "
bbsy + addr + msyn, if (tssyn) goto pl(passl);
bbsy + addr + msyn, while (creg<>0) loop to pl(wait2):;

errorl: bbsy + addr + error, ret; " timeout error "

passl: bbsy + addr + complt + datain, ret: " normal exit "

" DMA WRITE ROUTINE (unibus master DATO) "

nprdato: bbsy + addr + cl + dataout, load pl(31#h);
wait3: bbsy + addr + cl + dataout, if (tssyn) goto pl (wait3);
wait4: bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2):
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2):
bbsy + addr + cl + dataout + msyn, if (tssyn) goto pl(pass2):
bbsy + addr + cl + dataout + msyn, while(creg<>0)loop to pl(wait4);
error2: bbsy + addr + cl + error, ret; " timeout error "
pass2: bbsy + addr + cl + complt, ret; " normal exit "
.org 63#d
off, goto pl(0): " hardware reset here. "
end.

Figure 5-4. Unibus Controller Source Program Listing (Sheet 2 of 2)

5-7

PROM Contents are

hex
000
001
002
003
004
005

006
007
008
009
00A
00B
oocC
00D
00E
OOF
010
01l
012

013
014
015
0l6
017
ols
019
0lA
01B

olc.

01D
0lE
0lF
020
021
022
023
024
025
03F

<dec>
0>
1>
2>
3>
4>
5>

AANAANANA

6>
7>
8>
9>
10>
11>
12>
13>
14>
15>
16>
17>
18>

AANAAAAAAANAAAANNA

19>
20>
21>
22>
23>
24>
25>
26>
27>
28>
29>
30>
31>
32>
33>
34>
35>
36>
37>
63>

AAAAAANAANAANAANAANANANANANANANAAN

Ll T T Yo o

Ll Lt L T Yo e T L T T T}

P T e Lo L Lo Y R L L L e Yo Yo o Yoo Yo Yo

[}

HHEHEREHHO

HHERFHHHERPRRHRHERRRRRRERERER HHREHRRERRERERR RS R

OPCODE POL TEST DATA
11100 | 0 | 101 | 001011 |
11100 | 0 | 101 | 010000 |
11001 | 1 | 101 | 000000 |
11001 | O | 011 | 000011 |
11001 | 1 | 01l | 000100 |
01101 | 1 | 111 | 111111 |

OPCODE CONSTANT DATA
100 | 000000 | 001110 |
11001 | 1 | 111 | 000110 |
01101 | 1 | 111 | 111111 |
11001 | 1 | 001 | 001001 |
11001 | 0 | 110 | 000000 |
‘11001 | 0 | 101 | 001110 |
11001 | 0 | 000 | 001100 |
00010 | O | 110 | 111111 |
11001 | O | 000 | 001110 |
00010 | O | 110 | 111111 |
11001 | O | 100 | 010000 |
11001 | 1 | 100 | 010001 |
01101 | 1 | 111 | 111111 |

OPCODE CONSTANT DATA
100 | 000000 | 010110 |
11001 | 1 | 111 | 01001l |
11001 | O | 101 | 0Ol1110 |
00100 | 0 | 110 | 110001 |
11001 | ©O 001 | 010111 |
11001 | © 001 | 0Ol1l101 |
11001 | © 001 | 011101 |
11001 | 0 | 001l | O01ll0l1 |
01000 | 0 | 110 | 011000 |
00010 | O | 110 | 111111 |
00010 | O | 110 | 111111 |
00100 | O 110 | 110001 |
11001 | O 001 | 011111 |
11001 | O | 001 | 100101 |
11001 | O | 001 | 100101 |
11001 | 0 | 001 | 100101 |
01000 | O | 110 | 100000 |
00010 | 0 | 110 | 111111 |
00010 | O | 110 | 111111 |
11001 | O | 110 | 000000 |
Figure 5-5. FPC PROM Contents

OUTPUT
0000000000000000
0001000000000000
0010000000000000
0000000000000000
0000000000100000
0000000000101000

0000000000101000
0000000000101000
0000010001001100
0000010001000100
0000000100000000
0100000000000000
0000010000000010
0000000000000000
0000001000000010
0000000000000000
0000000000000000
0000000000010000
0000000000011000

0000000000011000
0000000000011000
0011000000000100
0000100000000100
0000100000000100
0000100000000101
0000100000000101
0000100000000101
0000100000000101
1000100000000100
0000101100000100
0000110010000100
0000110010000100
0000110010000101
0000110010000101
0000110010000101
0000110010000101
1000100010000100
0000100110000100
0000000000000000

et e et el e e e e e e el el o e e el e et et s

5-8

weibejq Sujwy) HE "9-G aanbiy4

Wi ALV ARAAURAAAARAAVARRRARAANY
f—

[

LAV AAARARRRRRAAAARRRRAAAAAARRRRAAAVAY

01livm €HINI CHLNI L HINI L HINI O HLNI

N S N s s I Y Y e Y o

95 V16590

(0) 11dWOD

(1) NASS

(0)viva

{0) HLNI

(0) Asgg

) Asg8

(0)Movs

() og

(o)ug

(o34l

Haav

=avi

5-9

wesbeiq Bujwil YdN "Z-S @4nbid LG V16590

() 31em

NNAAAAAANAAAAAANAAAAARAAAAAAAAAAAAAARAAA A s

Z (0) Asg8

1)
L1

(0)Movs
, lﬂ, \N\N\ . (1) 9dN

/ \\ﬂk {©)udN

() oa”vwa

v
0¢/2z _ iz _ 0z _ 6 _ 8t _ I _ mn _ o _ 1 _ waay

cHdN L HdN LHdN XHdN 13avi

1 O I

5-10

NPRDATO TIMING

o Lo b
LABEL NPRDATO WAIT3 WAIT4 PASS2

ADDR 30 | 31 | 32 | 33 | 34 | a7 | 2 |
BBSY (0)

DATA (O)

—
ADDR (0)
MYSN (0) / (____.\
COMPLT (0) k__./—__—

N W

NPRDATITIMING

R N S A e O
LABEL NPRDATI WAIT 1 WAIT 2 PASS1
ADDR 22 | 2 | 24 | 25 I 2 | 29 | 2 I

ADDR (0)

|
BBSY(0) _/ \
_

MYSN (0) /

SSYN(J)

COMPLT (O)
DATAIN (0) L—b/———\—

06591A 5-8

Figure 5-8. NPR DATI and DATO Timing Diagram

5-11

DATO TIMING (SLAVE)

S I S B S R O B

LABEL TOP DATX DATO DATO

ADDR | 0 1 | 14 | 14 | 15 | 9 |

— |
s Cm
usmo | \\\\\\\\J

DATI TIMING (SLAVE)

w [L L L

LABEL TOP DATX DATI DATI

(HIGH)

|

ADDR l 0 | 19 |

DATXREQ (1) .
et : (LOW)
DATAIN (0) L___./

MSYN () \\\\ \\S I

)

06591A 5-9

Figure 5-9. DATI and DATO (Slave) Timing Diagram

5-12

CHAPTER 6
Am29PL141 BASED DEC Q-BUS CONTROLLER

6.1 THE DESIGN PROBLEM

Designing an interface for the DEC Q-Bus has
been approached using many techniques. One
technique, microprogramming, has in the past
been economically unattractive because it
required use of a separate sequencer, control
store, and pipeline registers. Now that Advanced
Micro Devices has introduced the single chip
Am29PL141 Fuse Programmable Controller,
engineers can economically apply powerful
microprogramming techniques to the design of
medium complexity state machines like that
required to control the Q-Bus.

The problem is to design an interface between the
Q-Bus and a generic device to allow the following
operations:

» DATI/DATO with device as slave

» Device interrupt request

« Device direct memory access request
- DATI/DATO with device as master

The DEC Q-Bus is an asynchronous bus which
supports Programmed I/O, prioritized Interrupts,
and Direct Memory Access (DMA) operations. All
bus transfers are between a bus master and bus
slave, and are controlled by the master. An arbi-
trator grants bus mastership to requesting devices.

The nine basic types of transfers allowed are:

DATI - Worddatatransfer from slave to
master

DATO - Worddatatransfer from masterto
slave

DATOB - Byte data transfer from master to slave

DATIO - Read-modify-write word transfer

DATIOB - Read-modify-write byte transfer

DATBI - Block datatransfer fromslave to
master

DATBO - Block datatransfer from masterto
slave

DMR - Direct Memory Access request to
become bus master.

IRQiI — Interrupt request at level i (4,5,6,0r 7).

The following control signals are used during
transfers:

SNYC sync
DOUT data out

— master timing control
—indicates master write

DIN datain —indicates master read
RPLY reply —slave acknowledge
WTBT write/byte —byte write cycle

BS7 1/Opage select

IRQi interrupt requestlevel i

1AK interrupt grant

DMR DMA request

DMG DMA grant

SACK select acknowledge

6.2 Q-BUS CONTROLLER HARDWARE DESIGN

A block diagram of this interface is shown in Figure
6-1. It consists of three sections—Q-Bus
buffering, address decoding, and control logic.
The address decoder detects addressing of the
device as a slave during DATI and DATO transfers.

The control logic is based on the Am29PL141
Fuse Programmable Controller (FPC). Its
microprogram implements a state machine to
control both device and Q-Bus handshaking. Test
inputs are synchronized with the FPC clock using
an AM29821A 10-bit register and a D flip-flop.
Note the use of a multiplexer to expand the FPC
test capability. The additional D flip-flop and AND
gates are used to implement the interrupt and
DMA request/grant handshaking.

6.3 MICROWORD FORMAT

The microword organization for this application of
the FPC is shown in Figure 6-2. The 32-bit micro-
word is subdivided into fields of various sizes and
functions. The 16 most significant bits are used
during next address generation within the FPC,
while the lower 16 bits are application interface
signals.

6.4 MICROCODE

The microcode of Figure 6-3 was written using the
Am29PL141 assembler available from AMD.
Mnemonic definitions are shown, followed by code
to control the interface. Figure 6-4 shows the FPC
PROM contents. A brief description of the code
follows.

After reset to address 63, the program branches to
label TOP and loops until one of the external

conditions DATXREQ, DMAREQ, or INTREQ is
asserted.

DATXREQ true indicates a Q-Bus DATO or DATI
operation addressing the device and causes a
subroutine call to DATX. Q-Bus signal WTBT is
tested, and DATO or DATI handshaking is
completed beginning at label DATO or DATI.

INTREQ is asserted when the device wants to
interrupt the CPU, causing execution to continue
at INTRO. Interrupt request/grant processing
occurs and then the vector is read by the CPU.

6.5 CONCLUSION

The problem statement for this interface does not

require block, byte, or read-modify-write master
handshaking. These features can be imple-
mented by adding extra device request lines and
microcoding the additional handshake algorithms.
Another possible change is to implement the Q-
Bus four-level interrupt configuration. These
changes are left as an exercise for the interested
reader!

References:

Microsystems Handbook, Equipment

Corporation, 1985.

Digital

Am29PL141 FPC Data Sheet, Advanced Micro
Devices, 1987.

6-2

DEVICE [¢ INTERFACE Q-BUS
BUFFER
ADDRESS/
BUS p——————]
out DATA
ENA
4 _Am29806/9 Am29823
ENABLES [—~4—dE REGISTER
Z — | " DECODER
DATXREG | — A[e—Q D
AE
ENA A CL
I :] T :] RPLY
D1 SYNC BUFFER
CP(15MHz) [—> 74F74 - 7 out
at 2 7 BUS fo- CONTROL SIGNALS
DouT WIBT
T SYNC N WTBT
3 WTBT | gpLy — SYNC
DMAREQ °, ENA RPLY
INTREQ fe— DN izie)
WRITE DMGI X DMR
IAKI 10 SACK
V. V. DGUI
45 <5 DMGO 74F00 BIN
D D DMGO
Am29821A 1AKO TAKO
CP(15MHz) REGISTER I~
V. V
15 1s owmal D?F?:)Z
DATXREQ
) CP —>CLK
74F251A
— MUX SYNC : N I
r—%8 Y RPLY 1AKI RG| |DMAR
DIN l
5,DMGI
+’i“-’ 4 Ak ‘:
cC 15 T[4:0]
RESET RESET
Am29PL141 ZERO |— N.C.
CP(15 MHz) K
P[15:0] L
18 DATAOUT
COMPLT *3 11 r L)
ERROR L/
DATAIN ADDROUT
3, 8, 2,
7 7 7
IRQ, DMAR
06591A 6-1

Figure 6-1. Q-Bus Controller Block Diagram

: 31 : 30 ~-26 : 25 : 24,23,22 : 21 - 16 : 15 : 14,13,12 : 11 -0
: oe opcode : pol : test : data : error : aux tst : command
oe: output enable
(31)
opcode: 29PL141 command
(30-26) 00 - RETPL 08 - LPPL 10 - CMP 18 - FORK
01 - RETPLN 09 - DEC 11 - CMP 19 - GOTOPL
02 - RET OA - LPPLN 12 - CMP 1A - WAIT
03 - RETN 0B - GOTOPLZ 13 - CMP 1B - DECGO/C
04 - LDPL 0C - DECAL 14 - PSHPL 1C - CALPL
05 - LDPLN 0D - CONT 15 - PSH 1D - CALPLN
06 - LDTM OE - CTTM 16 - PSHTM 1E - CALTM
07 - LDTMN OF - GOTOTM 17 - PSHN 1F - CALTMN
pol: test polarity (1 = negate)
(25)
test: conditional test input select
(24,23,22) 0 - sync 4 - iak
‘1 - rply 5 - aux tests
2 - din 6 - pass
3 - dmg 7 - equal flag
data: branch address, test input mask, or counter load value
(21-16)
error: timeout error indication to device
(15)
aux test: additional test inputs when test = §
(14,13,12) 0 - datxreq 4 - dout
1 - dmareq 5 - wtbt
2 - intreq 6 — spare
3 - write 7 - spare
command:
(11-0)
¢ 11 : 10 9 : 8 7 6 : 5 4 3 2 1
: com : data : data : addr : rply : irqg : dmr : sack : dout : din : sync
: plt ¢ in : out* : out* : H : : : : :

- indicates active low microcode bits

Figure 6-2. Q-Bus Controller Microword Format

¢ wtbt

" Q-Bus Controller microcode using Am29PL141 assembler

" Version 1.1

device (pll4l)
default = 1 ;

define
" o % % e % ok k Kk dkk

to
tl
t2
t3
t4

tsync
trply
tdin
tdmgi
tiaki
_aux t5
pass cc
sync_rply

wwuwnunun

" o % % Kk kg ok ok ok

" AUXILIARY
datxreq
dmareq
intreq
write
tdout
twtbt

" CONTROL SI
off
error
complt
datain
dataout
addrout

mwwuwnn

rply
irg
dmr
sack
dout
din
sync
wtbt

test_condition =

R. Purvis, 3 January 86

DEFINITION OF TEST INPUTS ‘%%%

= 03#h

DEFINITION OF OUTPUTS

" test Q-Bus signal S
" RPLY

% e ok &

YNC

DIN
DMGI

I

auxiliary test conditions "

unconditional pass
test mask " .

TEST CONDITIONS

0300#h

-1300#h

2300#h
3300#h
4300#h
5300#h

FDFF#h
FEFF#h

0380#h
0340#h
0320#h
0310#h
0308#h
0304#h
0302#h
0301#h

no signals active
error flag to device
complete flag to dev

AKI

ice

"
"
n
"
"

Je & e e de de g K K ke Kok ok Kk

Q-Bus DATI or DATO request
device DMA request
device Interrupt request
device write request
Q-Bus signal DOUT

Q-Bus signal WTBT

aux tests 6 and 7 are spares

strobe data in from Q-Bus

gate data onto Q-Bus
gate address onto Q-

assert Q-Bus signal

cc; " default test condition "

Bus

RPLY
IRQ
DMR
SACK
DOUT
DIN
SYNC
WIBT

Figure 6-3. Q-Bus Controller Source Program Listing (Sheet 1 of 3)

6-5

"okkkkk

intro:
intrl:
intr2:
intr3:
intr4:

datx:
dati:
waité:

dato:
waits:

assumptions ddedekokk "

no I/0 page DMA "
single xfer DMA (not block mode) "
single level interrupts "
no byte operations "
no parity "

" dededkkdehkodokdkokkkk Source Code e de gk e e e ek ok ok Kk "
" Q-Bus Controller V1.0 "

Jeok ok e ok ok e ok ok ko o ek ko ko ok ok ok ok e e ok e ko ok ke ok ok ke ek ke ek ok "
* MAIN LOOP - Loop at TOP until external condition "

* DATXREQ, DMAREQ, or INTREQ is true. "
dedkedekdekdekdhhhhkhdkhdhdkddhhddkhkdkkdkkdkkdkddddehdedkdkdhdkddkhkhkk "

datxreq, if (aux) call pl(datx):
dmareq, if (aux) call pl(dmax):;
intreq, if (not aux) goto pl(top):

dkdkkkkkkkhhhkkhhhhkhhkhhkhhhkhhkhkdhkhhkhkhkkhhkhhhkhkkhkhkhkdkd "

* INTERRUPT SERVICE ROUTINE - Device interrupt service "
* request. Perform Q-Bus interrupt handshake. "
dkkkkhkkhkhdkhhhhhkdhhhhhddhhhdkdhhhhhdkkhhhohhhkhhhkhhhhkhhhhkkddhk "

off, if (tdin) goto pl(intro): " request/grant handshake "
irqg, if (not tdin) goto pl(intrl);

irg, if (not tiaki) goto pl(intr2):

rply * dataout, if (tdin) goto pl(intr3):; " " output vector "
rply * dataout, if (tiaki) goto pl(intr4):

complt, goto pl(top):

dhkdhkhdkhhkhhhkhkhhhhdhhdhhkhhhdhdkhhhkhkhdkhdhhdkdkhkhhhhhhhdhhhkhhhhhddhid "

* PROGRAMMED I/O ROUTINE - Q-Bus master accessing "
* device. Perform Q-Bus DATO/DATI handshake. "
hkkdkkkhkhkdehhkhhkkhhkhhhhkhhhkhkkkrhkhhhhhhhkhkhkkhkhdhkdkhkhkkhkdkkkkkkkd "

twtbt, if (aux) goto pl(dato):

off, if (not tdin) goto pl(dati): " slave DATI "
rply * dataout, if (tdin) goto pl(waité):

off, ret;

tdout, if (not aux) goto pl(dato):; " slave DATO "
rply + datain + tdout, if (aux) goto pl(wait5):

off, ret:;

Figure 6-3. Q-Bus Controller Source Program Listing (Sheet 2 of 3)

6-6

dmax:
dmal:
dmaz2:

dmadati:

waitl:
errorl:
passl:
wait2:
n

dmadato:

wait3:

error2:

pass2:

wait4:

end.

Je e o e e e e de e de e e e ok e ok e ke ok ke e ok ek ok ok ok ok ok e e ok ok ok ok ok ok ok e ok ok e e ok ok ok ok ko ok ok ok ok k ok ok

* DMA SERVICE ROUTINE - Device DMA service request.
* Perform Q-Bus DMA handshake.
o g e ok ke e ok ok ok ke ok e ke ok ok ok ok ok ok ke ok o ke e ok ok ok ok o ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko

off, if (tdmgi) goto pl(dmax); " request/grant handshake
dmr, if (not tdmgi) goto pl(dmal);

dmr, cmp tm(sync_rply) to pl(0):;

dmr, if (not eq) goto pl(dma2);

sack + write, if (aux) goto pl(dmadato): " bus master now "

DMA READ ROUTINE (Q-Bus master DATI) "

sack * addrout, continue; " addr setup "
sack * addrout, continue;

(sack + sync) * addrout, continue; " addr hold "
(sack + sync) * addrout, load pl(2B#h); " 10 us timeout "
sack + sync + din, if (trply) goto pl(passl);

sack + sync + din, if (trply) goto pl(passl);

sack + sync + din, while (creg<>0) loop to pl(waitl);

sack + sync + error, ret; " timeout exit "
sack + sync + din, continue; " data deskew "
sack + sync + din, continue;

sack + sync, if (trply) goto pl(wait2); " clock data in "

complt, ret;

DMA WRITE ROUTINE (Q-Bus master DATO) "

(sack + wtbt) * addrout, continue; " addr setup "
(sack + wtbt) * addrout, continue;

(sack + wtbt + sync) * addrout, continue; " addr hold "
(sack + wtbt + sync) * addrout, load pl(2b#h):

(sack + sync + dout) * dataout, if (trply) goto pl(pass2);

(sack + sync + dout) * dataout, if (trply) goto pl(pass2):

(sack + sync + dout) * dataout, while(creg<>0)loop to pl(wait3):
sack + sync + error, ret:; " timeout exit "
(sack + sync + dout) * dataout, continue; " data deskew "
(sack + sync + dout) * dataout, continue;

(sack + sync) * dataout, continue; " data hold "
(sack + sync) * dataout, continue;

sack + sync, if(trply) goto pl(wait4);

complt, ret;

.org 63#d

off, goto pl(0): " hardware reset here.

Figure 6-3. @-Bus Controller Source Program Listing (Sheet 3 of 3)

6-7

PROM Contents are :

hex
000
001
002
003
004
005
006
007
008
009
00A
00B
ooc
00D
00E
OOF
010
011

012
013
014
015
016
017
018
019
0la
01B
0lc
01D
OlE
OlF
020
021
022
023
024
025
026
027
028
029
02A
02B
02¢C
02D
02E
03F

<dec>
0>
1>
2>
3>
4>
5>
6>
7>
8>
9>
10>
11>
12>
13>
14>
15>
16>
17>

AAAAANAANAAANANAANANAANANANAN

18>
19>
20>
21>
22>
23>
24>
25>
26>
27>
28>
29>
30>
31>
32>
33>
34>
35>
36>
37>
38>
39>
40>
41>
42>
43>
44>
45>
46>
63>

ANAAAAAANAAAAAANAAAANAAANAAANAANAANAANANANAANAAANA

Lo L R T Lam R L T L e Y e e e T T T Y

Lot Ran tan Tan Tan Lo T F o Y e e E e e Y e e e e e e T

OE

O e e i

HFERHEFHHEFHEREFEFRRRERRRERRRERRRERRERRRRR R R R

OPCODE POL TEST

11100 | 0 | 101
11100 | 0 | 101
11001 | 1 | 101
11001 | 0 | 010
11001 | 1 | 010
11001 | 1 | 100
11001 | 0 | 010
11001 | 0 | 100
11001 | 0 | 110
11001 | 0 | 101
11001 | 1 | 010
11001 | 0 | 010
00010 | 0 | 110
11001 | 1 | 101
11001 | 0 | 101
00010 | 0 | 110
11001 | 0 | 01l
11001 | 1 | o1l
OPCODE CONSTANT
100 | 000000
11001 | 1 | 111
11001 | 0o | 101
01101 | 1 | 111
01101 | 1 | 111
01101 | 1 | 111
00100 | 0 | 110
11001 | 0 | ool
11001 | 0 | 001
01000 | 0 | 110
00010 | 0 | 110
01101 | 1 | 111
01101 | 1 | 111
11001 | 0 | 001
00010 | 0 | 110
01101 | 1 | 111
01101 | 1 | 111
01101 | 1 | 111
00100 | 0 | 110
11001 | 0 | 001
11001 | 0 | ool
01000 | 0 | 110
00010 | O | 110
01101 | 1 | 111
01101 | 1 | 111
01101 | 1 | 111
01101 | 1 | 111
11001 | 0 | 001
00010 | 0 | 110
11001 | 0 | 110

DATA
001001
010000
000000
000011
000100
000101
000110
000111
000000
001101
001010
001011
111111
001101
001110
111111
010000
010001

DATA
000011
010010
100001
111111
111111
111111
101011
011101

'011101

011001
111111
111111
111111
011111
111111
111111
111111
111111
101011
101001
101001
100101
111111
111111
111111
111111
111111
101101
111111
000000

OUTPUT
0000001100000000
0001001100000000
0010001100000000
0000001100000000
0000001101000000
0000001101000000
0000000110000000
0000000110000000
0000101100000000
0101001100000000
0000001100000000
0000000110000000
0000001100000000
0100001100000000
0100011110000000
0000001100000000
0000001100000000
0000001100100000

0000001100100000
0000001100100000
0011001100010000
0000001000010000
0000001000010000
0000001000010010
0000001000010010
0000001100010110
0000001100010110
0000001100010110
1000001100010010
0000001100010110
0000001100010110
0000001100010010
0000101100000000
0000001000010001
0000001000010001
0000001000010011
0000001000010011
0000000100011010
0000000100011010
0000000100011010
1000001100010010
0000000100011010
0000000100011010
0000000100010010
0000000100010010
0000001100010010
0000101100000000
0000001100000000

Figure 6-4. FPC PROM Program Listing

e e e e e e e e e e e e e e e el et

e et e 1 e e e e e et e e e e L e e e e L e L e e e s L s L L

6-8

CHAPTER 7
STARLAN CONTROLLER USING Am7990 AND Am29PL141

7.1 THE DESIGN PROBLEM

This application note describes the use of an
Am29PL141 to make it feasible to use an Am7990
and Am7960 in a Starlan type of environment. In
this application, an Am29PL141 controls a dual-
ported memory to isolate DMA transfers from the
CPU. The Am7960 could just as easily be
connected in a half duplex mode providing a very
inexpensive Ethernet-like Local Area Network
(LAN).

The 7990 is designed as a 10 MHz
Ethernet/Cheapernet communications controller.
Since this part also operates at 1 MHz, it is
applicable for Starlan (IEEE 802.3 1 base 5).

The Am7990 has the following characteristics:

1. ltisdedicated for 16-bit interface

2. Data transfer can only be in eight word, non-
preemptible bursts. This requirement limits
LANCE's flexibility in adapting to a network
such as Starlan because of the great difference
in speed between Starlan (1 MHz) and
Ethernet (10 MHz). Therefore an intelligent
bus arbitrator or a dual array buffer memory is
desirable.

However, the transmit clock provides the
reference for both the DMA state machine and
the network transfer rate. Because of this, the
DMA transfer rate is slow at the 1 MHz network
transfer rate.

In a system environment, DMA Bus time is at a
premium so, during packet data transfers for
transmit or receive, the DMA transfers eight (8)
words (16 bytes) at a time, with each transtfer taking
6 TCLKs. This takes 4.8 microseconds at 10 MHz.
However, slowing down the network speed to the
1 MHz Starlan speed in order to use conventional
telephone cable has disastrous consequences on
system throughput. At 1 MHz network speed, the
System Bus time for a DMA transfer of eight words
is 48 microseconds, far too long for the bus to be
unavailable to the CPU.

This problem can be solved by using an
Am29PL141 controller to manage the DMA
transfer, freeingthe CPU for other tasks.

7.2 FUNCTIONAL DESCRIPTION

The heart of the design is the two port memory
arbitrator. This is accomplished in a 29PL141 Fuse
Programmable Sequencer. Refer to the simplified
block diagram, Figure 7-1, the control circuitry
diagram, Figure 7-2, and the address and data
circuitry, Figure 7-3. Figure 7-4 shows the
miscellaneous circuitry including the READY,
RESET, address decoder, and clock circuit.

As seen in Figure 7-3, the memory (two 8K x 8
Static RAMs) are buffered from the CPU and also
from the Am7990. The memory chips are linked to
a memory controller (U3 and U4) that makes them
available to the main CPU to move data as well as to
the 7990 to move packets and ring control data. In
this manner, the CPU is isolated from the 48
microsecond burst time of the 7990 and, in fact, is
isolated from all DMA activity. (This architecture
could even be used at a 10 MHz Ethernet rate to
provide the same DMA bus isolation for the CPU.)

In the following discussion, refer to Figure 7-2 for
the control circuitry blocks: U1, 2, 3, 4, 13, 16, and
17.

U1 (25LS2521) provides l/O space address
detection on 128 address granularity. See Figure
7-2.

U2 (25LS2521) provides memory bus address
comparison and is jumper-selectable on 16K byte
boundaries. The output from U2 goes to a
decoder (see Figure 7-4) and then to U3. The
decoder also provides a HOLDA active signal to
the CPU bus at pin BDO. The CPU can test this pin
to see if the Am7990 is using the DMA.

U3 is a 16L8 PAL device, which provides all the
Bus interface control lines. See Section 7.4 for
the actual equations of the PAL devices.

U4 (Am16L8) is the 7990’s control PAL device. It
handles Data Bus control and direction as well as
the ready lines of the 7990. U4 also provides the
Write Enable for the 99C88s to determine high
and low byte writes.

U16 (Am29PL141) is the main memory
arbritrator/scheduler. It provides control signals to
control the Am7990. It also provides inputs to the

7-1

weibelq ¥oo|g 18]|onuod YA UelelS “i-L eanbid

mw.oﬁ

m—é(

sng
ndo

QHN3N
UMW3N

1-L V16590
ol
) 7 (8'2n) ¥¥2S1
wwm% (9'sn) sves
€l sy333NgVLVa
AHOWIN _«—1 ONvSS3Haav
o |e
/] ¢ /] 4
- (ev'1in) svest
(2 .wm w_a wm r@v._ (01'6n) €681
. AR sH344NavLva
aNVSS3HAaV
OHINOD
(v'en) we'ze e in
(81°21'94n) 8191 12525158
Y3TIOHINOD 21901 JUVANOD
1piId6ewy JOHINOD ss3daay

30IA30vd

HMOI

6Ly

wn

oin‘sn
en
en

<L V16550

Aninau) Je|jonuo) uelels -Z-L eanbi:

owa 3Hed vzn
1 1va M 3HE066L fe— vz 'zzien) []
3HE0662 sva vin <] g1am N3066£ (-2 3NDI) f—
—] AQvadoss: 1353 Sin «—] gH3M ov1 6n THINOS 1
oin'sn ELLZ S0066 am owva p— -Taosiv ||
a1oH Ya10H AQV3HOS6L OHOI fo—
(€Ln) 0661V UM ava
sva VAT0H. e
zi'n HIdgaoss. HMOI (vzn) 52151
zn N3EA066L. QHOI zzn)vost |, |
(bn) 819t izn)ces]
¥30003a
: X
o3
()] —
12525152
5
Emww_ 2 m IMWIN o3
9d IMW3IN ¥10 3 = nva HM (tn) e—]
Sd HIDTAOWIW SL 1 % siwin JOWIW IMOs6L -
L1 va Imos6L vL 1oL I ven N3AQVIH N3066Z
€d N3066Z L sva Je— 9'sn < Hia3 JWOOWIW
2d YOW3W 2L a1oH giro's’n N3d dWodol
td YaIoH m QUWIN OHWAN QHWIW
0d S2066L oL ouol oHOl HMWIW
a0l
Mol
(91n) 1vL1dezwy @in) vLis (en) g9t ,

AQv3dg
135348
oas
3HENEG

va

LA
sng
Nndo

Sh-
‘vag

QHNIN
HMWN3IW
adoi
HMOI

7-3

Annoui) eleq pue ssalppy ueliels ‘g-L ainfbily

3

wn) (en)wia3
8HIM b0 (en)N3av3
(en) 30NN — Inmll : —
s N3ggoss. (vn)
30 SO MH yiaaaoses (vn)
€L V16590 ﬂ
€=t 3 Hia -
V1 .
sk-8 S1-8 611
al mwnnn__ m—lw._<n_ "2} 8
610) 88986 (@) sves - - *va
on) (8n) vv2s1
(zin) X g13m (v
30 SO MY _ { 4
. Tetyy '3 da o 6L
- i
8081) £oq) “ar wa e A.l “ova
@ o a (v40) 88066 (11n) s¥2S1 (2n) vves
LS L snga
i . Nndo
ASH+ hll
(81N) XTON9L - (ewn) Hia El
: 3 ‘_‘ s2q) #%ag
3 9 - (on) sves
1IXd mTcSmEJ«é X
_ — oxy Emm—m ERl] NS10 P —
: 1IXL so — >
4doot 518 . TI
s A vNaL o va ba 3
oxL 0XL wa o o
0o axy axy g — al as
a Tvﬁ YNIH I 3 (sn) svzs1
2 ¢ OIXL oxd H1oXd 3 [5)
axd axd royy 0yq b
w
(ezn) oseLuv (e1n) 0BBLWY (6n) €263

———— N3066Z (9LN)

7-4

DER

DECO
(/O ADDRESS COMPARE &

u2 CPUTEST OF HOLDA ACTIVE)
“LS32
LS04 MEMCOMP (U3)
BA2(BUS) Dc 021)
(U22) BNIORD LS32
LSO4
(U21)
LS32 I
HOLDA (Ut6) BDO (BUS)
(U24)
RESET CIRCUIT
LS125
BNBHE (BUS) BBHE (U4)
i (U24)
LS04 LS04
BRESET (BUS) 'l> RESET (U13)
(U22) (U22)
RESET (U16,U23)
READY CIRCUIT
+5V +5V
l Ls112
J a
(V<)) IORQ (u19)
= RDY LS08
. Ls12s
. K @ D___ READY BREADY (BUS)
(U1e) 7990CS L83z MEMRDY Uzo (U24)
4 556 READY EN (U3)
— u21
READY
+5V +5V
l CLOCK CIRCUIT
Ja
) +5V
U3) MEMRG '(S};)z l
K Qa
5V 8CLK D Q 8 CLK (U16, 17)
R 14 i
(U16) MEMOK LS08 ()_ .
16 MHz K @ 8CLK
(U16) MEMCYLCLR U20 7 T
= +5V

06591A 7-4

16 MCLK (U23)

Figure 7-4. Miscellaneous Control Circuits

7-5

PAL Devices to control the memory access. See
Figure 7-2 for the routing of its signals.

The Am29PL141 can accept seven (7) different
test inputs and control 16 different events. This
application uses six (6) input lines and eight (8)
output lines to accomplish the handshaking and
control. .

U17 (S174) is used to provide metastability
hardening of the Am29PL141.

In the following discussion, refer to Figure 7-3 for
the address and data circuity blocks: U5, 6, 7, 8, 9,
10, 11,12, 13, 14, 15, 18, and 23.

U5 and U6 (LS245)
buffering.

provide the Data Bus

U7and U8 (LS244) provide the address bus
buffering.

U9 and U10 (LS373s) serve as address latches to
demultiplex the 7990’s DAL bus.

U11 and U12 (LS245s) are data buffers to isolate
the 7990 for the dual porting.

U13 is the Am7990. It uses U23 (Am7960) as the
Manchester encoder/decoder and media interface
to the TXD and RXD lines. This circuitry is shownin
Figure 7-3.

U14 and U15 (99C88) are the memories
themselves. These may also be expanded very
easily if required. The address and data lines are
shownin Figure 7-3.

U19 (LS112), U20 (LS08), U21 (LS32), and U24
(LS125) provide the Ready line conditions

appropriate to the Bus timing of valid data to the -

main CPU. This circuitry is shown in Figure 7-4.
The clock circuit is also shown in Figure 7-4. The
16 MHz clock is a crystal oscilator. Its fundamental
use is to drive the Am7960 (U23) directly. The
oscillator frequency is divided by two to drive the
prelatch (U17) and the Am29PL141 (U16). Figure
7-4 also shows the RESET circuitry which sends a
CPU bus reset signal to the Am29PL141,
Am7990, and the Am7960.

This design may also be used to not only provide
isolation to the DMA but also to provide a bus
translation service for an 8 bit CPU. The 16 bit I/0
transfer needed by the Am7990 write and read can
be accomplished if, on the data bus side, the D8-
15 LS245s are replaced with LS373. In memory

operation, the LS373s are made transparent but in
I/0, the high byte is written first and then as the low
byte is written, both are enabled into the 7990. On
a read, the full 16 bit transfer takes place and the
low byte is read immediately. The next operation
reads location I/O + 2 for the D8-15 value.

In this application, memory is treated as memory
and the 7990 is treated as 1/0 space. The 2 port
memory is used by the CPU to set up ring
descriptors as well as the rings themselves.
Packet buffers can be assembled and
disassembled in this area under the operating
system at low level drivers. 16K space is enough
for 8 512-byte transmit rings and 8 512-byte
receive rings. At 1 MHz data rate, that is probably
more than enough. However, a 10 MHz design
may require 64K DRAM to provide sufficient high
speed memory bandwidth.

7.3 MICROPROGRAM

The Am29PL141 controller's major function is to
process a HOLD request by the Am7990. When
the Am7990 is not active, it processes normal CPU
memory read/write and normal /O read/write
(Figure 7-5 shows the microprogram flow diagram).

When the Am29PL141 receives a HOLD request,
it sends a HOLDA signal to the Am7990 to activate
the Am7990. The HOLDA signal also goes to the
BDO pin of the CPU so that the CPU can check to
see if the Am7990 is using the DMA. Only in the
HOLDA path (main path) is another task allowed
besides the normal path. In the HOLDA path, the
CPU is allowed access until T5 of the Am7990
state machine. At that point, the memory is
diverted and remains until the completion of the
7990 DMA. The Am7990 dropping Hold Request
(HOLD) is what finally clears the HOLDA cycle and
returns control to the Am29PL141. Branch #1 is
just a normal CPU I/O read/write and branch #2 is a
normal CPU memory read/write when the HOLDA
is not active. Figure 7-6 is the actual microcode of
the 29PL141.

Note: The 7990 cannot be slave-accessed with
HOLDA valid. Therefore, any 1/O request is
blocked in the controller during a DMA transfer. In
order to prevent a possible 48 microsecond
Ready/Wait signal, HOLDA can be sampled by the
CPU at the data I/0O pin BD0O and when logically
false, the I/O request can then be made at I/O
address of 7990 + 4.

7-6

7.4 PAL DEVICE EQUATIONS

PAL Device #1 (U3): CPU Bus Control

(AmPAL16L8)
PIN
/IORD =1 /MEMWE =11
/IOWR =2 /WE = 12
/MEMRD =3 /DALI = 13
/MEMWR =4 /MEMOE = 14
/MEMCOMP = 5 /READYEN = 15
/IOCOMP = 6 /EDIR = 16
/7990EN = 7 /EADEN = 17
/7990WE = 8 /IORQ = 18
/WR 9 /MEMRQ =19
BEGIN.

MEMRQ = MEMRD * MEMCOMP + MEMWR *
MEMCOMP ;

IORQ = IORD * IOCOMP + IOWR *
IOCOMP ;

EADEN = MEMRQ * /7990EN + IORQ *
/7990EN ;

EDIR = MEMRD + IORD ;
READYEN = MEMRQ + IORQ ;

WE = 7990WE * WR + MEMWE * MEMWR +
/7990EN * MEMRQ * MEMWR ;

MEMOE = /7990EN * MEMRD + 7990EN *
DALI ;

END.

PAL Device #2 (U4): 7996 control
equations

PIN

/IORD =1 /BBHE =11
/IOWR 2 /WELB = 12
/JHOLDA = 3 /WEHB = 13
/DALI =4 /WE =14
/IORQ =5 /7990READY = 15
/DALO =6 /WR = 16
/LAO =17 /DAS = 17
/7990EN = 8 /7990DBDIR = 18
/7990BHE = 9 /7990JDBEB = 19
BEGIN.

IF (/HOLDA) THE ENABLE (DAS , WR,
7990READY) ;

DAS = OWWR + IORD ;
WR = IOWR ;

7990READY = HOLDA;

7990DBEN /HOLDA * IORQ + HOLDA *
7990EN * (DALI + DALO) ;

7990DBIR
DALI ;

/HOLDA * IORQ + HOLDA *

WELB

/LAO0 * WE ;

WEHB = WE *7990EN * 7990BHE + WE *
/7990EN * BBHE ;

END.

7.5 SUMMARY

In summary, the design solves the system
requirements of double buffering and DMA
isolation using a minimum of parts yet retaining
memory at bus bandwidth without a large number
of wait states added. The 7990 is allowed full
access as needed without ever seeing a slow
down and the basic design has a large amount of
frequency latitude for the LAN Speed.

BRANCH #1 (LOC1)

RESET

GOTOLOCO

BRANCH #2 (LOC2)

SET NO
N7980CS

YES (LOC4)
Em
SETNHOLDATOO | MST=19 i
THRUALL POL=1 NMEMOK
TEST=010
INsTRUCTIONS | TEST-010,
OUTPUT=FFFF
(Loc6) '
CLEAR
N7990CS JES
OE=1
INST=19 CLEAR
ik NMEMOK
TEST=010
DATA=00H
OUTPUT=FFFF
CLEAR
NHOLDA
{Loci2)
SET
7990EN
SET 7990WE
FOR 2 CLKS MEMRT (LOC16)
THEN CLEAR

E OE-1
SET
INST=00
Rl OUTPUT=FFB0
VES l
OE-1
INST=02
SETNMEMWE
CLEAR POL~0
7990EN SETAMEMCYL | 1EsT-010
DATA=00H
OUTPUT-FF30
RETURN
06591A 7-5

Figure 7-5. Starlan Controller Program Flow Diagram

7-8

DEVICE (PL141)

DEFAULT = 1 ;

DEFINE
NIORQ = TO
NMEMRQ = T1
NHOLD = T2
NDAS = T3
TCLK = T4
vcCc = CC
N7990CS = FFFE#H
NHOLDA = FFFD#H
NMEMOK = FFFB#H

N7990EN = FFF7#H
N7990WE = FFEF#H
NMEMCYLCLR = FFDF#H
NMEMWE = FFBF#H
NEXEC = FF7F#H;

DEFAULT_OUTPUT = FFFF#H;

BEGIN
EXEC : NEXEC , IF (NOT NHOLD) THEN GOTO PL (HOLDA) ;

NEXEC , IF (NOT NIORQ)THEN GOTO PL (IORQ) :

NEXEC , IF (NOT NMEMRQ) THEN GOTO PL (MEMRQ) ;

NEXEC , IF (VCC) THEN GOTO PL (EXEC) ;
MEMRQ : NMEMOK , IF (NMEMRQ) THEN GOTO PL (EXEC) ELSE WAIT;
IORQ : N7990CS , IF (NIORQ) THEN GOTO PL (EXEC) ELSE WAIT;
HOLDA : NHOLDA , IF (NOT NMEMRQ) THEN CALL PL (MEM) ;

NHOLDA , IF (NHOLD) THEN GOTO PL (EXEC) ;

NHOLDA , IF (NDAS) THEN GOTO PL (HOLDA) ;

NHOLDA , IF (NOT MEMRQ) THEN CALL PL (MEM) ;

NHOLDA , IF (NOT TCLK) THEN GOTO PL (HOLDAl) ELSE WAIT;
HOLDAL : NHOLDA , IF (NOT NMEMRQ) THEN CALL PL (MEM) ;

NHOLDA , IF (TCLK) THEN GOTO PL (HOLDA2) ELSE WAIT;
HOLDA2 : FFF5#H , CONTINUE ;

FFES#H , CONTINUE ;

FFES5#H , CONTINUE ;

FFF5#H , IF (NDAS) THEN GOTO PL (HOLDA) ELSE WAIT;
MEM : FFBB#H , CONTINUE ;

FF9B#H , CONTINUE ;

NHOLDA , IF (VCC) THEN RET ;

.ORG 634D

EXEC , IF (VCC) THEN GOTO PL (EXEC) ;
END.

Figure 7-6. Starlan Controller Source Program Listing

79

CHAPTER 8
IBM PC-SSR INTERFACE USING an Am29PL141 CONTROLLER

8.1 THE DESIGN PROBLEM

This application note describes the use of an
Am29PL141 controller and an IBM PC or other
computer to run diagnostics tests on a device
containing a Serial Shadow Register (SSR). The
SSR is a special serial in, serial out register built
into devices to facilitate diagnostic testing.

To test a complex state machine or a microcoded
CPU engine in a manufacturing environment is a
complex task. The conventional method has been
to use a “Bed of Nails” consisting of probes making
contact to the printed circuit board (PCB) in
specially assigned places. A master program in the
tester provides a stimulus and then checks the
response. These Bed of Nails test fixtures are com-
plex and costly and worst of all, are mechanically
interlinked in such a manner that a simple
movement of an IC on the PCB may cause a whole
fixture to be scrapped or at least reworked. Each
fixture may cost up to $10,000 and requires an
expensive tester to control it.

8.2 SSR FUNCTIONAL DESCRIPTION

AMD in conjunction with MMI pioneered a concept
called Serial Shadow Register (SSR). Typically in
state machines or microcoded CPUs, data is
latched into a register on one clock to drive the
iogic and on the next ciock, the resuilt is iatched
into a destination register. The SSR is an addi-
tional diagnostic register linked to the main device
register. It can load new information into the
device register and capture the response of the
device. Various test inputs are entered into the
SSR serially from a computer with the assistance of
a controller (FPC). The device executes the input
and returns the result into the SSR. The controller
serially extracts the result from the SSR and
transfers it to the computer. The computer then
checks the response with the known correct
response. Using serial input and output to the
SSR keeps the pin count down.

SSRs can be used in all phases of the product
testing because they are a part of the device and
therefore available at all times. They can be used
in engineering to debug the design, in manufac-
turing to test each device for compliance, and, in
field service, to diagnose faulty operation either at

the customer site or at the repair depot.

The controller’s task is to convert the parallel IBM
PC bus, or equivalent, to a serial data stream to be
shifted into the SSRs. The SSR is driven from a
relatively inexpensive Personal Computer (PC)
that has a file of many stimulus patterns and the
corresponding response patterns. In operation,
the PC writes the first byte of the stimulus pattern
to the SSR controller, in parallel (See Figure 8-1).
The controller then shifts the -pattern out to the
SSR (stimulus chain, N1 bits long, in the device to
be tested) and informs the PC through the
“DONE” flag that it can accept more parallel data.
This interchange goes on until the stimulus chain
in-the device being tested is full (N1 bits shifted).

Then the PC changes the state from “SHIFT OQUT"
to “EXECUTE” and the controller generates the
necessary clocks to compute the response. The
FPC then loads the first byte from the SSR
response chain into the PC read register and
informs the PC. The PC now examines, on a bit
for bit basis, the response pattern just read with
the known good response pattern in its file. Any
errors can be flagged and output to the printer or
displayed on the CRT screen, thereby helping
pinpoint the exact area of fault. This byte compare
goes on until the entire response chain of N2 bits
has been examined. This whole sequence can be
done as many times as necessary to fully check out
the PCB at the bit level.

8.3 ARCHITECTURE

The heart of the operation is the AMD
Am29PL141, Fuse Programmable Controller. It
takes care of controlling the D clock, P clock, and
Mode of the serial chain. It shifts the 8 bits out and
then specifies “DONE”. It monitors the “SHIFT
OUT” and “Go” control bits for status change.
Figure 8-2 gives pin level detail of the blocks or
units shown in the the block diagram. Figure 8-3
shows the user interface circuitry.

U1l serves as an address decode PAL Device
whose equations are given later. U2 is just a data
bus buffer to keep the loading to 1 LS TTL load.

U3 and U4 form the handshake flip flops for the
Am29PL141 controller to the PC interface. U3

controls the state of the controller. The “MODE
SHIFT OUT” is for the loading of stimulus into the
SSR. When that is through, the PC clears this flip
flop and sets the “GO” bit which is a trigger for the
Am239PL141 (U11) to set the SSR Mode line to 1,
issue 2 P CLKS and then 1 D clock.

U5 is the input shift register used for the parallel to
serial conversion. U6 is the number of bits to shift
this time. It must always be written prior to the
writing of U5.. Writing to U5 sets the “NEW DATA”
flag flip flop U3 to tell the Am29PL141 to shift out.
U8 is just an -interface to the 6 pin connector to
isolate the board from the device under test.

U7 is the serial to parallel converter. When read, it
puts data on the internal data bus (BDO-7). When
U8 is read, the “READ DATA” flip flop is set to
inform the Am29PL141 to shift in 8 new bits for
interrogation.

U10 is a register to pre-synchronize the asyn-
chronous signals to guarantee set up times for the
Am29PL141. This prevents any metastability
problem for the Am29PL141.

U11 is the Am29PL141 programmable controller
(See Figure 8-2). It provides the timing and control
signals to operate the device. It controls the
parallel flow of data between the IBM PC and the
serial/parallel convertors, U5 and U7. It controls
the serial flow of data between U5 and U7 and the
device under test. One of the outputs EXEC is a
status signal. It is set when the microprogram is in
the EXEC loop. This output can be monitored by a
diagnostic probe if desired.

The typical user interface circuitry is shown in
Figure 8-3. It represents the minimum that needs
to be done on the board under test.

The flow diagram of the microcode is shown in
Figure 8-4. The assembler source code for the
program is given in Figure 8-5. The PAL Device
equations are given in Section 8.4.

84 PAL DEVICE EQUATIONS FOR 18P8

(in PLPL)
Device (Am18P8)

PIN
/IOWR

1 /IORD 2
GND 10 . A2

[AS:A3]
11

[3:9]

Al 12 A0 13 /COUNTLD

/DATAIN = 17

19 /DBEN 18

DATAOUT = 16 . /STATUS WR = 15
RD 14 ;

STATUS

BEGIN

STATUS RD IORD * A9 * A8 * A7 * A6 * A5 *
A4 * /A3 * /A2 * /A1l * /MO ;

STATUS WR IOWR * A9 * AB * A7 * A6 * A5 *
A4 * /A3 * /A2 * /Al * /AO ;

DATA OUT IORD * A9 * A8 * A7 * A6 * A5 *
A4 * /A3 * /A2 * /Al *'AO ;

DATA IN IOWR * A9 * A8 * A7 * A6 * A5 * A4

* /A3 * /A2 * /Al * AO ;

DBEN (IORD + IOWR) * A9 * A8 * A7 * A6

* A5 * A4 * /A3 * /A2 ;

COUNT LD IOWR * A9 * A8 * A7 * A6 * A5 *
A4 * /A3 * /A2 *Al * AO ;

END.

8.5 SUMMARY

This design represents a minimum number of ICs
to do an interlinked control job for the SSR chain.
The objective is to show that a low cost testing
alternative is available to diagnose state machines
and microprocessors.

8-2

Poemesemescacsocq

ONO1SLE2N

* NIVHO ISNOJSTH :
: uss :

r-..-u.d.-u.-.-n
i

PERE LR

: 1901

heeaeead

ONOTSLEIN .

r

HSsS .

Lecececsnsncnnnd

1S3LH3ANN
30iIA30

(zin)

* NIVHO SNINWILS

30OV443IINI HISN

(en'sn)

03X3 +—

1NO Y1) +—

NIH10 +——
09410 +—{
3NOQ «—
H10d —

F——— %100 +——

wedbeiq yo0|g 48]|01uU0 HSS “}-8 ainbi4

1no
v1va 1371Ivdvd
OLIvid3s

(zn) e25152

moudog

S1g40°ON
INNOD

(an) e64S1

300N <

10
SL
43
g
HITIOHINOD &L
318VAVHO0Hd
asnd Y
(tn) o
L1 1d6Twy

NI VLV3 Wi"3s
0OL7131vvd

(sn) s91s1

H3ding
snaviva

1-8 V16590

(en)

S¥es

viva
M3IN (N)
[7y

H31S1934
ONAS-3Hd

viva
avad (vn)
¥281

3aNOa

09 (n)
174 |

4300030

ss3daav

(1n)
8dslt

(otn)

PLIST

ino
1dIHS

Saow (&N

¥LST

0qg

g

60y
adol
umol

Ood Wl

8-3

Anynoud ssjjonuod USS 28 0nbid

28
V6590 (1in'orn) e——
DU
1N0 Viva (1in)
w‘ NIV1iva
1 |
— _ (sn) 9J—o008 @1.INNOJ 3 Hia
0a8 «<—{Z (zn) = Sle— 108 108 —
108 «—— €1 u.llw s ¥ le— 208 < 908 «——
zag «—9 (0sS)t ot €le—¢€a8 (sn) 508 <+«
€08 «—— ¥i (1S)6} — ¥} je— vag St je— o008 ¥08 «——
$08 «—| S 6 |— €l le— sa8 |hh. Lje— a8 €08 +—
508 «——{ St 2} je— 908 143 0} je—208 208 «—
ASH
908 «—{ ¥ 14 fe— 208 (2n) [QLT €aa (2 108 «— e
20
(en) 208 «—{ 94 2t _.| 4 008 +— 2S1
.J 59181 \ At | esis1 w S
_m €l (¥n)
0 drNviva
o a (11n)3Noa
[l
q AS* QY SNLVIS
AS*
(vn) (1n)
2 drhoviva e
o a J (43
73]
A 1
6
(1n) Ast
1353y 13534 (0d) ._. 8
03x3 LI) ﬁ 310 (0d) 3] L
o6 L inoy19 —{°d 00 ||_ =~ o 9 vl 9
2in1s «——@n L nwio—]s s el 0 Ql— L dsa s
B (en} RS d L1 pg+ vis | fen) No8a
. ges1 oouo—{ra VIVAMIN Je— oag Towwa 4>
e -— — € €
¥10d +—5—@f 3 m {zntod anog—{td oL viva avay As+— nmviva & ¢
M10d — 2, 2, 61
o 8est od d L I*Mortos e G1INNOD ¢
1N) X100 —4 [}
—a ¥oa—td 0o (<R TWenIVIS " ader '
8es1 Il_.|||| 300N —{ °d o 1N0L4IHS 300N © Qje—1aalen
7]
{24} 300N +——(@n|3- L1 d6ewy o yus1 @ T
Ast

WO ZHN LY
13534
Qayol

‘a
°a
<a
'a
ta
za

°g

v
v
ey
¢y
v
sy
o
Ly
sy
sy
adol

HMO!

3OV4HILINI
Od nal

8-4

150 S240
1 TO SHIFT IN INPUT OF
1STSSRREGISTER
+5V
150 $240
— TO DCLK INPUT OF
DCLK 2 ALLSSR
+5V
150 $240
e TO MODE CONTROL
MODE 3 OFALLSSR
S240
54 FROM SO OUT OF LAST
REGISTER IN SSRCHAIN
5 N

\
.
2
ll'—‘

S240
w1

2
—— 0 TOPIPELINE CLK ON ALL
PCLK 6 REGISTERSANDCHIPS

W3
T_ FROM INTERNAL

CLOCKSOURCE
JUMPER W2-W3 FOR NORMAL OPERATION
W1-W2 FOR DIAGNOSTIC MODE

06591A 8-3

Figure 8-3. User Equipment Interface Circuitry

RESPONSE | YES

SSRTO
PIPELINE

RESULT:
PIPELINE
TOSSR

DECREMENT DOLK=-1
CREG DCLK=0
NO
YES
RESP3
YES

‘ NCLROUT=0

CREG <7
NCLROUT =1
RESP2

Figure 8-4. SSR Controller Program Flow Dlagram

READDATA
=17

o —

YES

NO

NEW DATA
=1?

STIMULUS
ROUTINE

DONE=0
NCLRIN=0

CREG<-7

DECREI
CRE(

NCLRIN=1

NBORROW
=0?

=OUTPUT SIGNALS OCCURRING
INONE INSTRUCTION CYCLE

06591A 8-4

8-6

DEVICE (PL141)
DEFAULT = 1 ;

DEFINE
MODE_SHIFTOUT = TO
GO = Tl
NBORROW = T2
READDATA = T3
NEWDATA = T4

VCC = CC

MODE = 0071#H
DCLK = 0072#H
PCLK = 0074#H
DONE = 0078#H

NCLRGO = 0060#H
NCLRIN = 0050#H
NCLROUT = 0030#H
EXEC = OOFO#H ;

DEFAULT OUTPUT = 00704H ;

BEGIN

EXECL : EXEC + DONE , IF (MODE_SHIFTOUT) THEN GOTO PL (EXEC2) ;
EXEC + DONE , IF (GO) THEN GOTO PL (RESP) ;

EXEC + DONE , IF (VCC) THEN GOTO PL (EXECl) ;
EXEC2 : EXEC + DONE ,IF (NOT NEWDATA) THEN GOTO PL (EXEC1) ;

STIM : NCLRIN , IF (VCC) THEN LOAD PL (07#H)
STIM1 : DCLK , CONTINUE ;
; CONTINUE ;

» IF (NOT NBORROW) THEN GOTO PL (STIM2) ;
, WHILE (CREG < > 0) LOOP TO PL (STIML) :
STIM2 : EXEC + DONE , IF (VCC) THEN GOTO PL (EXECL) ;

RESP : NCLRGO + MODE , CONTINUE ;
MODE + PCLK , CONTINUE ;
MODE , CONTINUE ;
MODE + PCLK , CONTINUE
MODE + DCLK , CONTINUE

~e ~eo

RESP1 : NCLROUT , IF (VCC) THEN LOAD PL (O7#H) ;
RESP2 : DCLK , CONTINUE ;

, CONTINUE ;

+ WHILE (CREG < > 0) LOOP TO PL (RESP2) ;
RESP3 : + _IF (READDATA) THEN GOTO PL (RESPl) ;

+ IF (NOT MODE_SHIFTOUT) THEN GOTO PL (RESP3) :
DONE + EXEC , IF (VCC) THEN GOTO PL (EXECL) ;
.ORG 63#D
DONE + EXEC , IF (VCC) THEN GOTO PL (EXECL) ;
END.

Figure 8-5. SSR Controller Source Program Listing

CHAPTER 9

QUARTER-INCH TAPE CARTRIDGE and SMALL COMPUTER SYSTEM
INTERFACE CONTROLLER USING Am29PL141

9.1 OVERVIEW

This application note describes the use of the
Am29PL141 Fuse Programmable Controller
(FPC), to control both the Quarter Inch Tape
Cartridges via the QIC-02 industry standard and
the Small Computer Systems Interface (SCSI), also
an industry standard as defined by ANSI X3T9.2
subcommittee. This controller functions as the
“Host” to the QIC-02 interface and as an “Initiator”
to a SCSI system. This design provides the
capability to transfer data in both directions,
between the SCSI bus and QIC-02.

A practical use is to back up data on a hard disk
(SCSI) via Tape (QIC-02). The FPC functions as a
high performance (50 ns instruction cycle time) 1/0
Controller which is slave to the system CPU (host).
It supports the maximum data rates of both
interfaces (1.5 Mbyte/Sec. asynchronous mode
for SCSI). This design uses the 80188
microprocessor, but any host microprocessor
could be interfaced to the FPC in a similar fashion.
The QIC-02 standard interface is fully supported
and the single initiator multiple target mode is
supported for SCSI. Although this application
does not include using all advanced features of
SCSI, the section on “Advanced Features of
SCSI" does provide insight into upgrading this
design.

In the following discussions, it is assumed that the
reader is somewhat familiar with the 80188, FPC,
QIC-02, and SCSI. Anoverview of the QIC- 02 and
SCSil is given below. A discussion of the QIC-02
and SCSI, including timing diagrams, has been
included in Appendix B.

9.1.1 QIC-02 Overview

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure 9-1. The bus and
control signals between QIC-02 and host are all
standard TTL levels. Timing diagrams for this
interface are given in Appendix B. This interface
handshake timing is duplicated for the host side by
the FPC and two AmPAL22V10s.

The interface lines are used as follows:

ACKNOWLEDGE (ACK) is used with Transfer to
transfer data across the interface.

READY (RDY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by the host must be READ
STATUS.

DIRECTION (DIRC) indicates direction of data flow.
This signal is used to enable/disable the data bus
transceivers inthe HOST.

ON-LINE signal is deasserted at the beginning of a
read (fromtape) or write (to tape) operation.

ACKNOWLEDGE

READY

EXCEPTION

DIRECTION

ONLINE

Qlc-02
TAPE
DRIVE

HOST
SYSTEM

RESET

REQUEST

TRANSFER

06591A G-1

Figure 9-1. QIC-02 Interface

RESET initializes the tape drive.
repositions the heads to track zero.

REQUEST indicates that a command is on the data
bus.

TRANSFER is used with ACKNOWLEDGE to
handshake data overthe bus; see timing diagram.

9.1.2 SCSI Overview

Small Computer Systems Interface (SCSI) is a disk
controller standard developed by the ANSI X3T9.2
subcommittee. SCSI defines an 8-bit parallel bi-
directional data bus with parity, plus nine control
lines. The SCSI protocol allows single or multiple
host computers (initiators) to share multiple
peripherals (targets, i.e. hard disk, floppy disks,
etc.). Up to eight daisy chained devices can
reside on the SCSI bus, with data transfer rates of
4 Mbytes/sec. synchronous and 1.5 Mbyte/sec.
asynchronous. The timing diagrams are given in
Appendix B.

The following is a summary of the interface signals:

I/0 is driven by a target to control the direction of
data movement. True indicates input to the
initiator.

MSG is driven by a target to indicate “Message
Phase”. When MSG is asserted, REQ (Request) is
also asserted by the target for transfer of data byte

The drive -

indicating the end of the operational
(“Message”).

phase

REQ is asserted by target to indicate that a data
byte is to be transferred on the data bus. Data byte
is transferred via handshake with ACK
(Acknowledge).

ATN (Attention) is driven by an initiator to indicate
to target an “attention” condition.

An initiator uses SEL along with asserting the
appropriate data (address) bits (0-7) to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop the target's present operation and return
same to idle condition.

Data bus and control signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with multiple
targets. SCSI provides for either single ended
(6 meter max. cable length) transmission or
differential (up to 25 meters).

9.2 FUNCTIONAL DESCRIPTION
Figure 9-2 shows the block diagram of the

Am29PL141 (FPC) QIC-02 and SCSI Controller.
This controller functions as a “Host” to the QIC-02

ADDRESS/DATA PROGRAM
K)| MEMORY)
PROM SCSI
INTERRUPT DATABUS
ANDSTATUS
L N | MAN
 MEMORY
80188 RAM
MICRO- N
PROCESSOR DATABUS Qic-02
V| DATABUS
N Am29PL141 oL
v LINES
DUAL CHANNEL
BUS CONTROLLER AmPAL22V10
DMAREQ/INT/ARDY
QIc-02
CONTROL
LINES
AmPAL22V10
Figure 9-2. AmPL141 QIC-02 and SCSI Controller Block Diagram 06591A 9-2

interface and as an “Initiator” to a SCSI system.
This design is composed of three main functional
blocks: Microprocessing Unit, Dual Channel Bus
Controller, I/O Bus Interface.

The Microprocessing Unit is a straightforward
design centered around the 80188 micro-
processor which provides system level control to
the FPC through commands issued over its 8-bit
data bus and with feedback from the FPC via DMA
requests, interrupt, wait state insertion asynch-
ronous ready (ARDY), Interrupt Register, and a
Status Register.

The heart of the Dual Channel Bus Controller is the
Fuse Programmable Controller (Am29PL141)
which generates and monitors interface control
signals for both I/O bus interfaces (QIC-02 and
SCSl). The FPC is slave to the 80188, and
controls the transfers of commands, status, and
data to/from both I/O interfaces via single byte
DMA transfers to/from Main Memory. Interleaved
single byte transfer to/from both /O devices is
provided. This approach supports maximum rates
for both /O channels.

The I/O Bus Interface provides single-ended drive
for both 1/O channels (48 mA per line). Open
collector drivers are required for all SCSI generated
control signals; however, standard (Am29800
family) buffers and transceivers are satisfactory for
the QIC-02 and SCSI data bus.

Each of these functional blocks are now described
in detail.

9.2.1 80188 Microprocessing Unit

The Microprocessing Unit in this design performs
all of the high level system control and application
functions required when interfacing to tape and
disk. These functions include system and
application programs, direct memory access (DMA)
controllers, timers, interrupt controllers and chip
select decoders. The 80188 High Integration
Microprocessor was chosen for this design
because all of the above functions except the
programs and associated memory are contained in

a single chip. The 80188 provides two DMA
channels, three programmable timers, a
programmable interrupt controller and a

programmable chip select decoder. In this design,
both DMA channels, one timer, one external
interrupt and four peripheral chip selects (PCS1-4)
are dedicated to the SCSI and QIC-02 interfaces.

In order to configure the 80188 for this application,
certain operations must be performed prior to
executing any instructions which will access the
SCSI or QIC-02 interfaces. After reset, only the

Upper Memory Chip Select (UMCS) is active in
order to allow the 80188 to begin execution at
location FFFOH. At this time, UMCS is pro-
grammed for a block size of 1K bytes. To allow full
use of the Am27512, 64KX8 EPROM, the UMCS
register should be programmed with the value
FO3DH. This sets UCMS for a 64K byte block size,
inserts one automatic wait state and ignores
external RDY in the range FOOOOH to FFFFFH.
Likewise, the Lower Memory Chip Select (LMCS)
must be programmed via the LMCS register.

Programming this register with the value O1FCH
selects an 8K byte block size, zero automatic wait
states and ignores external RDY in order to take full
advantage of the Am99C88-70, 70ns 8KX8 CMOS
Static RAM. Finally, the Peripheral Chip Selects
(PCSM) must be configured. Four of these PCSM
are used to select the SCSI and QIC-02 interfaces.
The PCSM are configured via MPCS and PACS
control registers. The MPCS register is
programmed with the value, 84B8H, which places
the PCSM in I/0 address space, enables all seven
PCS lines, inserts no automatic wait state, and
uses external RDY. This value also configures the
Mid-Range Memory Selects (MCSM) for 8 Kbyte
block size The PACS register is programmed with
the value 0078H. This places the PCS block at I/O
address OOOOH, inserts no automatic wait states,
and uses external RDY.

With the hardware now configured, the 80188 is
prepared to run applications utilizing the SCSI and
QIC-02 interfaces. An example of a simple
application is shown in Figure 9-3. This application
selects DISKO on the SCSI and reads 2000 bytes
into a data buffer. It then rewinds the tape on the
QIC-02 and writes the data buffer onto the tape.
As can be seen in Figure 9-3, there are several
support routines which perform the actual
communication with the SCSI/QIC-02 interface.

SOFTWARE SUPPORT ROUTINES:

FPC Control. This procedure outputs a function
and a code to the FPC command register. It also
reinitializes the watchdog timer via = another
procedure (WD.Init) not described here. The
watchdog timer is used to reset the Am29PL141 in
the event that a device on either the SCSI or QIC-
02 fails to complete the proper handshake and
locks up the bus of 80188.

SCSI-init. This procedure uses the FPC Control
routine to assert and deassert the SCSI RST signal
in order to initialize the SCSl interface.

QIC2-Init. This procedure asserts and deasserts
the QIC-02 RESET signal to initialize the interface.

9-3

PROGRAM MAIN;

/* THIS PROGRAM IS AN EXAMPLE OF THE ROUTINES NECESSARY TO
UTILIZE THE SCSI/QIC-82 INTERFACE. EACH ROUTINE IS DESCRIBED IN
THE ACCOMPANYING TEXT. THE MAIN PROGRAM PERFORMS THE SIMPLE
OPERATIONS OF READING A MULTI-SECTOR BUFFER, REWINDING THE TAPE
AND WRITING THAT BUFFER.TO THE TAPE. *x/

CONST
DISK®@

1; /* DISK ADDRESS ON THE SCSI BUS */

DATN
DRST
INTL
DTREQ
TPONL
TRINT
TPRST
DACK =

wounou

SET =
RESET = @; /* CONTROL CODE FOR RESET OPERATION */

FPC_COMMAND = @; /* FPC COMMAND REGISTER ADDRESS */
scsT = 128; /* SCSI DATA PORT ADDRESS */

TAPE = 256; /* QIC-@G2 DATA PORT ADDRESS */

ISR = 384; /* INTERRUPT STATUS REGISTER ADDRESS */
STAT = 512; /* STATUS BUFFER ADDRESS */

READ_COMMAND = BYTE [8, /* READ COMMAND CODE */
¢, /* LUN @, HEAD @ , TRACK @&,
SECTOR @ */

4, /* FOUR BLOCKS OF 512 TO BE READ */
@] /* ENABLE RETRIES AND ERROR CORRECTION */

CHAN@
CHAN1

@; /* DMA CHANNEL INDICATORS */
1;

EOI = 34 + 65280; /* EOI REGISTER OFFSET PLUS CONTROL
BLOCK BASE ADDRESS */

13; /* INTERRUPT 1 IDENTIFIER TO RESET

INT1_IS =
IN-SERVICE BIT IN EOI REGISTER */
DMAG_IS = 1@; /* DMA CHANNEL @ IDENTIFIER TO RESET
IN-SERVICE BIT IN EOI REGISTER */
DMAL IS = 11; /* DITTO FOR DMA CHANNEL 1 */

VAR
SCSI_FLAG, TAPE_FLAG, COUNT, I : INTEGER;
DATA_BUFFER [2000] : BYTE;
STATUS_BUFFER [2] : BYTE;

PROCEDURE FPC_CONTROL (FUNC, CODE) ;
CONST CMDMASK = BYTE 8;
VAR CMDACK : BYTE;

BEGIN
WD_INIT; /* INITIALIZE WATCHDOG TIMER */
CMDACK := 8; ’
DO WHILE CMDACK <> @
CMDACK := CMDMASK AND INPUT(ISR);
OUTPUT (FUNC*8+CODE, FPC_COMMAND);
END;

Figure 9-3. SCSI/QIC-02 Driver Example (Sheet 1 of 3)

9-4

PROCEDURE SCSI_INIT;
BEGIN
FPC_CONTROL (SET, DRST); /* ASSERT SCSI RST */
DELAY (100); /* WAIT 108 USECS */
FPC_CONTROL (RESET, DRST); /* DEASSERT SCSI RST */
END;

PROCEDURE QIC2_ INIT;
BEGIN
FPC_CONTROL (SET, TPRST); /* ASSERT QIC-062 RESET */
DELAY (100); /* WAIT 100 USECS */
FPC_CONTROL (RESET, TPRST); /* DEASSERT RESET */
END;

PROCEDURE D_SELECT (IDENT);
BEGIN
WD_INIT; /* INITIALIZE WATCHDOG TIMER */
OUTPUT (IDENT, SCSI); /* OUTPUT THE IDENTIFIER TO THE
SCSI PORT */
END;

PROCEDURE T_CMD (COMMAND) ;
BEGIN
WD_INIT;
OUTPUT (COMMAND, TAPE);
END;

PROCEDURE D_XFER (FUNC, BUFFER, COUNT);
BEGIN
IF FUNC = READ THEN
DMA_SETUP (SCSI, BUFFER, COUNT, CHANG);
ELSE
DMA_SETUP (BUFFER, SCSI, COUNT, CHANGO);
WD_INIT;
DMA_START (CHAN®);
END;

PROCEDURE T_READ (BUFFER, COUNT);

BEGIN
DMA_SETUP (TAPE, BUFFER, COUNT, CHAN1);
WD_INIT;
DMA_START (CHANL);

END;

PROCEDURE T_WRITE (BUFFER, COUNT);

BEGIN
DMA_SETUP (BUFFER, TAPE, COUNT, CHANL);
WD_INIT;

DMA_START (CHAN1);
END;

PROCEDURE FPC_ISR;
VAR INTSTAT : BYTE;

BEGIN
INTSTAT := INPUT (ISR); /* GET THE INTERRUPT STATUS */
IF INTSTAT AND TRDY MASK THEN

BEGIN -
FPC_CONTROL (RESET, TRINT);
TAPE_FLAG := 0;
END;
IF INTSTAT AND SCSI_ERROR_MASK THEN
SCSI_INIT;
IF INTSTAT AND TAPE ERROR MASK THEN
QIC2 INIT; - -

FPC_CONTR6L (RESET, INT1);
OUTPUT (INT1_IS, EOI);
END;

Figure 9-3. SCSI/QIC-02 Driver Example (Sheet 2 of 3)

9-5

PROCEDURE DMAG_ISR;
BEGIN
SCSI_FLAG := -;
OUTPUT (DMA@_IS, EOI);
END;

PROCEDURE DMAl_ISR;
BEGIN
TAPE_FLAG := 0;
ouTPUT (DMAl_IS, EOI);
END;

BEGIN /* MAIN PROGRAM BODY */

SCSI_INIT;

TAPE_INIT;

D_DELECT (DISK®);

SCSI_FLAG := 1; /* SHOW SCSI OPERATION IN PROGRESS */

D XFER (WRITE, READ COMMAND, 6); /* SEND READ COMMAND TO DISK */
DO WHILE SCSI FLAG = 1

I:= I+l; /* WASTE TIME WAITING FOR COMPLETION */
SCSI FLAG := 1; /* SHOW A NEW SCSI OPERATION IN PROGRESS */
D_XFER (READ, DATA_BUFFER, 2000); /* READ 2000 BYTES */

/* START AN OPERATION ON THE QIC-02 SIDE OF THE INTERFACE
TO RUN IN PARALLEL WITH THE SCSI OPERATION */

TAPE_FLAG := l; /* SHOW QIC-02 OPERATION IN PROGRESS */
T_CMD (REWIND); /* REWIND THE TAPE */
FPC_CONTROL (SET, TRINT); /* ENABLE INTERRUPT ON TAPE RDY */
DO WHILE TAPE_FLAG = OR SCSI_FLAG = 1

I := I+17 /* WAIT FOR THE OPERATIONS TO COMPLETE */

/* BOTH OPERATIONS ARE NOW COMPLETE */
SCSI_FLAG := 1;

D_XFER (READ, STATUS_BUFFER, 2); /* GET DISK STATUS */
DO WHILE SCSI_FLAG =1

I := I+1;
IF STATUS_BUFFER [1] = GOOD_STATUS THEN
BEGIN
TAPE_FLAG := 1;

H
T_CMD (WRITE); /* PUT TAPE IN WRITE MODE */
T_WRITE (DATA_BUFFER, 2000); /* SEND OUT THE DATA */
DO WHILE TAPE_FLAG = 1

I := I+1;
END;
END;
END.

Figure 9-3. SCSVQIC-02 Driver Example (Sheet 3 of 3)

D-Select. This procedure outputs an eight bit T-Write. This procedure writes data from a
select code to the SCSI interface. This process is memory buffer to the QIC-02.
intercepted by the Am29PL141 which performs
the SELECT handshake. FPC-SR. This procedure is the interrupt service
routine for the Am29PL141. Upon entry it obtains
T-CMD. This procedure outputs an eight bit the interrupt status from the FPC Interrupt Status
command to the QIC-02 interface. This process is Register (ISR). This status is examined to detect
intercepted by the Am29PL141 which performs the occurrence of any errors. If any are detected,
the COMMAND handshake. the offending interface is reinitialized. This is a
very rudimentary.form of error handling and is used
D-XFER. This procedure performs all data, only for purposes of this example. More elaborate
command and status transfers to and from the error handling is possible in actual applications.
SCSl interface. Prior to exiting this procedure, the interrupt source
is reset and the in-service bit in the interrupt
T-Read. This procedure reads data from the QIC- controller is cleared.
02 and places it in a memory data buffer.

9-6

AninosD J9jionuog ISOS PUe 20-0l0 L i1d6ewy 16 anbi4

76 V10590 A58 +—| w308 [none
pa
10
ey HOLYYINID
90 .I_ ANML] LN
8EYL | 1NOASB
TOHLNOD 1808 TErT 15Ha +—|
NLVQ +— HOLV1 Y ale s [—)
O3uLivE Yova] Figvssavaav
AQavY el vasa [
nowe | IS A.Ol._l
[z13s3H LLNOHWL
H33X <+ o INOdL HLnoL
NI
awon —f
1SN0 - oo o T TINI ox0
13834 <+ 29020y OSWQ —+ o34La
- “_ NMINO <+ ANHL = TS 034aa .
3NO —f ol WOVaND ‘"
1580 / nd
OHLNOD 20-010 o210 — m ﬂ W i
¥343n8 U' y HOVaa — NOILIGNGD : ¥50d +—| ¥50d
iy 0 (1)d (24 (6-€)d (6)d (o)d(11)d Z1)d H830 yy10SV30
L5t o] .mon..m ._Umm.—li n'd) $OVLa —») orAZIWY d d (@d H103d «—] 98 £50d «—£€50d
awon - 250d +—]2s0d
138 < NLVG oHIa— 1 150d +—]150d
v] U| A o3 HITIOHINGD W
Hov < A= AGHL SBVWALSOHd
%ova sov —sl » 3snd {k—— Y0 080d
HOVL OLN———1" wu3Lsiozy
IOHLNOD 1508 OHLNOD 20-00 1pid6uY NW i) N3Q -]
4o VOSGZWY v
Ase — NISAS S s \-
034 —+{ H344n8 '
o | vezeany 0340 10 13534
s AQHY
oS —»] S T
ONt — \ ‘nd
o z
IOHINOD 1595 Yionez 21353 SNavLva P—
88108
[
2130 AGHL —» @ wil—]una
1130 HOVL — Lv620Y
v
2430 dX3 —» —
1630 il h3g ouia —| 537308 U.ﬂmu so1
%ov1a 289d ¥S0d vy -
HIAIZOSNVHL ssoeuy AHOWIN =
"
sngvLva 20-0i0 ¢ NIV A
20010 An||lv ro862UY A ay
— y103d
wo on
13
~ N3
N3q —
ALY ———] u30 T oy awon—
10 OSNG —»] Hv Woud Ll wown M Iw
AFOSNVHL y3idng Ao K~ || vetesauy 4|||V Siv-ev
snaviva i AGEL= shivis WviooHd [VSna ssauaav Zav-oav
1508 AHV viteszwy N——m——— NIASE —] r“:mmmwz_ o 1353H f—1
oy son
axg—s 5 e55d
1508
Houu3
ALMVd INHL ™

9-7

DMAO-ISR, DMA1-ISR. These procedures signal devices provide the intelligence to control SCSI
the completion of data transfers to other modules and QIC-02 interfaces, and required additional MSI

by clearing the appropriate in-| process flag (SCSI -
FLAG, TAPE - FLAG).

control logic off-loading these tasks from the
80188 (any host CPU). In this application, the FPC
can be thought of as a high speed microprocessor-

9.2.2 Dual Channel Bus Controller Architecture like controller with twenty-nine fixed instructions,

and sixteen programmable output control lines

Refer to the complete schematic (Figure 9-4) for (thirteen of which are used in this application).
the Am29PL141 QIC-02 and SCSI Controller and Each instruction is executed during a single clock
two AmPAL22V10s. These three programmable cycle of 50 ns. Although it can operate as a stand-

DEVICE condition_code_mux (AmPAL22V1@) ;

"This device selects one of many lnput conditions to be tested
by the Am29PL141 and registers it in order to meet the CC setup
time requirement. It also collects two pieces of miscellaneous
logic necessary to produce the ARDY and DMSG signals."

PIN
clk =1 vemd = 2 trint = 3
dtreq = 4 ddack =.5 dtack = 6
exp = 7 trdy = 8 tack = 9
bsyin = 10 dreq = 11 c_d_bar = 13
msg = 14 dmsg = 15 ardy = 16
cc = 17 spare = 18 ardy_in = 19
cc_mux sel 3 = 20 cc_mux_sel_ 2 = 21
cc_mux_sel 1 = 22 cc_mux_sel_@ = 23 ;
BEGIN
ardy = ardy_in + /ddack * Jardy_in ;
dmsg = c_d_bar * msg ;
CASE (cc_mux_sel_3,cc_mux_sel 2,cc_mux_sel_l,cc_mux_sel @)
BEGIN
a) cc := vcmd ;
1) cc := ddack ;
2) cc := dreq ;
3) cc := tack ;
4) cc := dtack * dtreq ;
5) cc := dtack * /dtreq ;
6) cc := msg * c_d_bar + trint * trdy ;
7) cc 1= exp ;
8) cc := bsyin ;
9) cc =1
19) cc @ dtack
11) cc := dreq * ddack ;
12) cc := trdy ;
END;
END.

Test_vectors

IN
-clk cc_mux_sel 3 cc_mux_sel_2 cc_mux_sel_l cc_mux_sel 0
vemd ddack dreq tack dtack dtreq
msg c_d_bar trint trdy exp ardy_in bsyin ;

1.0 ;

ouT

cc dmsg ardy ;

Figure 9-5. Condition Code MUX PAL Device Description (Sheet 1 of 2)

9-8

BEGIN

ccce
cccc
mmmm
uuuu c a
XX XX _ r
d dd 4 t db
ssss vddt tt _ rt ys d a
c eeee cara armb ire _y m r
1 1111 mcec cesa ndx ii ¢ s d
k 32160 dkgk kqgr typ nn c g y
n
B XXXX XXXX XXXX XXX 1X X X H; "ardy"
g XXXX X1XX XXXX XXX 06X X X L;
g XXXX XOXX XXXX XXX 00X X X H;
0 XXXX XXXX XX11 XXX XX X H X; "dmsg"
0 XXXX XXXX XX10 XXX XX X L X;
g XXXX XXXX XX@1 XXX XX X L X;
g XXXX XXXX XX00 XXX XX X L X;
C 0000 OXXX XXXX XXX XX L X X; "cc = vcmd"
C 0000 1XXX XXXX XXX XX H X X;

C 0001 XOXX XXXX XXX XX L X X; "cc = ddack"

C 0001 X1XX XXXX XXX XX H X X;

C 0010 XXO0X XXXX XXX XX L X X; "cc = dreq"

C G017 XX1X XXXX XXX XX H X X;

C 0011 XXXO0 XXXX XXX XX L X X; "cc = tack"

C 0011 XXX1 XXXX XXX XX H X X

C 0100 XXXX 11XX XXX XX H X X; "cc = dtack * dtreq"
C 0100 XXXX OlXX XXX XX L X X;

C 0100 XXXX 10XX XXX XX L X X;

C 0100 XXXX 00XX XXX XX L X X;

C 0101 XXXX 11XX XXX XX L X X; "cc = dtack * /dtreq"
C 0101 XXXX 10XX XXX XX H X X;

C 0101 XXXX OGLlXX XXX XX L X X;

C 0l01l XXXX 0@0XX XXX XX L X X;

C Ulld XXXX XX11 60X XX H X X; "cc = msg * c_d_bar + trint * trdy"
C 0110 XXXX XX00 11X XX H X X;

C 0l10 XXXX XX00 00X XX L X X

C 011l XXXX XXXX XX@ XX L X X; "cc = exp"

C 0111 XXXX XXXX XX1 XX H X X;

C 1000 XXXX XXXX XXX X0 L X X; "cc = bsyin"

C 1000 XXXX XXXX XXX X1 H X X;

C 1001 XXXX XXXX XXX XX H X X; "cc = 1"

C 1010 XXXX OXXX XXX XX L X X; "cc = dtack"
C 1010 XXXX 1XXX XXX XX H X X;

C 1011 X11X XXXX XXX XX H X X; "cc = dreq * ddack"
C 1011 X01lX XXXX XXX XX L X X;
C 1011 X10X XXXX XXX XX L X

C 11006 XXXX XXXX X0X XX L X X; "cc = trdy"
C 1100 XXXX XXXX X1X XX H X X;

END.
Figure 9-5. Condition Code MUX PAL Device Description (Sheet 2 of 2)

9-9

alone controller, the FPC has been made a slave to
the 80188 uP, through the FPC test inputs (TO-
T5) and the Command Register (Am2950A).

The processor (80188) writes to the Command
Register which contains valid system commands (6
bits) to the FPC. During the IDLE loop of the FPC
software, the FPC selects VCMD (by setting
output lines P3-P6) as its CC (condition code)
input through the condition code mux. |f CC
(VCMD) is a “pass” condition (asserted) meaning
the Command Register has been updated, then
the FPC branches to the instruction whose
address is given by input TO-T5 (from command
register). After the command has been proces-
sed, the FPC deasserts the VCMD bit (in the Com-
mand Register) and returns to the IDLE loop to
check for either another command from the proces-
sor or a function required by either SCSI or QIC-02.

Checking for a VCMD and then branching to the
processor's command address enables the FPC to
operate asynchronous to the processor, whose
bus T states (100 ns) are at one-half the FPC's
clock rate and skewed in time. The seventh bit in
the command register is used for the parity error
latch in the SCSI transceiver, Am29834A, (upper
right corner of schematic, Figure 9-4).

The Conditon Code Mux (CCM) selects the
appropriate input to “CC" of the FPC as defined by
the FPC's output lines P3-P6. - This multiplexing is
not always a straight selection but does include
logical combinations of input signals in some cases
(see Figure 9-5, Condition Code Mux PAL
Definition File).

The CCM provides two other outputs. ARDY
(asynchronous ready) to the processor is asserted
when instructed by the FPC and is used to
lengthen the processor's bus cycle time (amount
of time data remains valid on the 80188 bus) when
QIC-02 or SCSI data transfer timing requires it.

The remaining output from the CCM is DMSG (Disk
Message) which is an input to the Interrupt Status
Buffer. This is asserted when SCSI asserts both
MSG and C/D. Under this condition, the FPC
generates an interrupt (INT1), through the
Addressable Latch (AmPAL22V10), to the
processor indicating that the Disk (SCSI) is
requesting “Command” Data. The processor then
reads the Interrupt Status Buffer to determine this
condition (DMSG asserted). The following inputs
are available to the CCM: VCMD, DTACK, and
DDACK signals (generated by the processor);
MSG, C/D, DREQ, and BSYIN (generated by the
SCSI control bus); TACK, TRDY, and EXP
(generated by the QIC-02 control bus) and TRINT
from the Addressable Latch.

Since the outputs from the FPC are subject to
change on an instruction by instruction basis (each
clock cycle), certain signals must be latched. The
AmPAL22V10 serves as an addressable latch,
addressed by the FPC output lines P3-P8
(LADDR). Note that output lines P4-P6 are over-
laid with the 3-bit field for the CCM. This technique
frees up three spare output lines at the expense of
instruction lines in the FPC. Lines P4-P6 select
which of the eight latches is selected. P8 enables
all latches. P7 determines set or clear of the latch,
and P3 (ARESET) provides an asynchronous
reset to all latches. The eight outputs from LADDR
are: INT1 and DTREG to the processor; TPONL
and TPRST to the QIC-02 control bus; DACK,
DATN and DRST (control signals to SCSI); and
TRINT (a feedback signal to the CCM). Figure 9-6
describes this PAL (LADDR).

9.2.3 Am29PL141 Microprogram

The Am29PL141 is a single-chip Fuse Program-
mable Controller. It is used in this application as a
complex controller by programming the appro-
priate sequence of instructions. The available in-
struction set is quite rich. It includes jumps, loops,
waits, and subroutine calls, which can be condi-
tionally executed based on the test inputs (T0-T5)
or CC input (all of these are used in this appli-
cation). The FPC flowcharts provide the details of
the FPC microprogramming used in this design.

As shown in Figure 9-7, the IDLE LOOP flow
diagram, the FPC continually cycles through this
loop from initial power-on reset (RESET2), and
jumps to one of nine routines depending on the
task at hand. After completion of the task, control
returns to the idle loop. RESET2 initializes the
FPC to start at address sixty-three. RESET2 is
generated on system power-up and when the
processor's watchdog timer times out (TMROUT1).
This timer is programmed to time out if the disk or
tape accesses fail to complete the proper
handshake in a reasonable time or the FPC locks
up the bus of the 80188 because of some error
condition. ‘

The first instruction (at address 63) is a NOOP. ltis
used to assert ARESET (output line) to LADDR for
deasserting of latches and to deassert all other
output lines. The next instruction is the
return/entry point into the idle loop. It selects the

" CCM to enable path for VCMD to CCinput of FPC.

The next state is the first condition test. If CCis a
PASS condition, there is a valid command (VCMD
asserted). The FPC branches to the address
given in Command Register (T0-T5). If VCMD is
not asserted (CC = FALSE), it selects DDACK as
an input for CC and continues to next incremental

9-10

DEVICE addressable latch (AmPAL22V10) ;
"This device is the addressable latch used by the Am29PL141 to expand
its I/0 capabilities."

PIN
clk =1 enable =2 ao =3
al =4 a2 =5 function = 6
reset =7 spare[0:4] = 8:11,13 /datn = 14
/drst = 15 intl = 16 dtreq = 17
/tponl = 18 /trint = 19 /tprst = 20
/dack = 21 spare_out(0:1] = 22:23 ;
DEFINE
set = function
BEGIN
IF (reset) THEN ARESET() ;
case (A2,Al,A0)
BEGIN
0) datn := datn * /enable + set * enable ;
1) drst := drst * /enable + set * enable ;
2) intl := intl * /enable + set * enable ;
- 3) dtreq := dtreq * /enable + set * enable ;
4) tponl := tponl * /enable + set * enable ;
5) trint := trint * /enable + set * enable ;
'6) tprst := tprst * /enable + set * enable H
7) dack := dack * /enable + set * enable ;
END;
END.
Test_vectors
IN
clk enable a2 al a0 function reset ;
I o;
ouT w
/datn /drst intl dtreq /tponl /trint /tprst /dack;
BEGIN
£
u
e n 17/
n cr // dttt/
a te ddit prpd
cb is arnr oira
11 aaaoe tste nnsc
ke2l0nt ntlg 1lttk
"
X X XXX X 1 HHLL HHHH;
C 0 XXX X 0 HHLL HHHH;
C 100010 LHLL HHHH;
C 100000 HHLL HHHH;
C 100110 HLLL HHHH;
C 1001 00 HHLL HHHH;
clo0l010 HHHL HHHH;
C 1010 0 0 HHLL HHHH;
C 1011 1 0 HHLH HHHH;
C 1011 0 0 HHLL HHHH;
C 110010 HHLL LHHH;
C 1100 0 0 HHLL HHHH;
C 110110 HHLL HLHH;
C 1101 0 0 HHLL HHHH;
C 1110 1 0 HHLL HHIH;
Cl1l100 0 HHLL HHHH;
cCl11 10 HHLL HHHL;
C1l1l11 00 HHLL HHHH;

Figure 9-6. Addressable Latch PAL Device

9-11

SETARDY
CC«-BSYIN

CC=PASS?

BRANCHTO CLRARDY
ADDR. To-Ts

SEE FIGURE 9-8

CALL“SEL*

SETDDREQ
CC <«-DDACK

SCSIPROCESSING

NO CC=PASS?

CLEARDDREQ
SETARDY
LADDR<«-DDACK
CC«-DREQ

CC<-TACK

CC=PASS?

CLEARLADDR
CLEARARDY

Figure 9-7. QIC-02 Controller Program Flow Diagram (Sheet 1 of 2)

06591A 9-7

9-12

RDXFER

4
WRXFER
SET 141XFER SETDTREQ
CLR DTREQ (LADDR OUTPUT)
(LADDR OUTPUT) SETADRY
CC=TACK CC=DTACK
CC=DTACK-DTREQ ’ '
YES
CLR141XFER CLEARDTREQ
CLR ADRY CLEARARDY
NO CC=TACK CC=DTACK
CC=DDACK
CALL 3

%: “SELL”
5] SETDTR
8 ETDTREQ SET 141XFER
2 SETADRY
z CC=TACK
5 O
CMDXFER
SETIATTAREQ
1
=DREQ- CLEAR141XFER
CC=DREQ+DDACK LEAR 14TXFE
YES | caLL
“SELL”
CC=TRDY
CC=PASS?
CLR 141TPREQ
CLRARDY
CC=TRDY
v
CC=PASS?
06591A 97

Figure 9-7. QIC-02 Controller Program Flow Diagram (Sheet 2 of 2)

9-13

®

SETLADDR=DTREQ
CLRCMDACK

. GOTOIDLE

2

SETLADDR=TPONL
CLRCMDACK

;

GO TOIDLE

D

SETLADDR=TRINT
CLRCMDACK

GOTOIDLE

D

CLR CMDACK
SETLADDR=DATN

GO TOIDLE

D

SETLADDR=DRST
CLRCMDACK

GO TOIDLE

CLEAR
DTREQ

CLRLADDR=DTREQ
CLRCMDACK

CLRLADDR = INT1
CLRCMDACK

GOTOIDLE

2

GOTOIDLE

CLRLADDR =TPONL
CLRCMDACK

SETLADDR=TPRST
CLRCMDACK

v

GOTOIDLE

@

GO TOIDLE

CLRLADDR = TRINT
CLRCMDACK

SET LADDR=TPRST
CLRCMDACK

GOTOIDLE

Q

CLRCMDACK
CLRLADDR=DATN

GOTOIDLE

2

CLRLADDR=DRST
CLRCMDACK

GOTOIDLE

Figure 9-8. Am29PL141 Valid Command Routines

GO TOIDLE

06591A 9-8

9-14

device (pll4l)
"Am29PL141 QIC-02 and SCSI controller"”
default = 1;
define
def = 1000#h
vemd = 1000#h "condition code mux select lines"
ddack = 1010#h
dreq = 1020#h
tack = 1030#h
dtareq = 1040#h
dtanreq = 1050#h
mctirdy = 1060#h
exp = 1070#h
bsyin = 1080#h
one = 1090#h
dtack = 10aO#h
drack = 10bO#h
trdy = 10cO#h

datn = 1000#h "addressable latch lines"
drst = 1010#h
intl = 1020%#h
dtreqg = 1030#h
tponl = 1040#h
trint = 1050#h
tprst = 1060#h

dack = 1070#h

cmdack = 0111#h "other output lines"
ddreq = 1800#h

sel = 1400#h

bsyout = 1200#h

lsrccms = 1080#h

len = 1100%#h

ccmardy = 1001#h

xfer = 1002#h

tpreq = 1004#h

lareset = 1008#h;

test_condition = cc;

begin
idle: vemd, continue;
vemd, goto tm(3f#h);
ddack, if (cc) then call pl(nsel);
dreq, goto pl(dmaxfer);
tack, goto pl(rdxfer);
dtareq, goto pl(wrxfer);
ddack, if (cc) then call pl(nsel);
dtanreq, goto pl(cmdxfer);
mctirdy, goto pl(dint);
exp, goto pl(tint);
one, goto pl(idle);
nsel: ccmardy+bsyin, if (cc) then goto pl(next) else wait;

next: one, goto pl(idle);

dmaxfer:ddreq+ddreq, if (cc) then goto pl(nextl) else wait;
nextl: ccmardy+dack+lsrccms+len, continue;

dreq, if (cc) then goto pl(next2) else wait;
next2: dack+len, goto pl(idle);

rdxfer: ccmardy+dtreq+lsrccms+len, continue;
ccmardy+dtack, if (cc) then goto pl(next3) else wait;
next3: dtreq + len, continue;
dtack, if (not cc) then goto pl(next4) else wait;
next4: xfer+ccmardy+tack, if (not cc) then goto pl(nextS5) else wait;

Figure 9-9. QIC-02 Controller Source Program Listing (Sheet 1 of 2)

9-15

next5: one, goto pl(idle):;
wrxfer: xfer+dtreg+len,continue;
tack+xfer, if (cc) then goto pl(next6) else wait;
next6: tack, if (not cc) then goto pl(next7) else wait;
next7: dtreg+len+lsrccms, continue;
one, goto pl(idle);
cmdxfer: ccmardy+treg+drack, if (cc) then call pl (nsel);
trdy, if (cc) then goto pl(next8) else wait;
next8: trdy, if (not cc) then goto pl(idle) else wait;
dint: intl+len+lsrccms, continue;
one, goto pl(idle);
tint: intl+len+lsrccms, continue;
dtreg+lent+lsrccms, continue;
one, goto pl{(idle);
setatn: datn+len+lsrccms, continue;
one, goto pl(idle);
clratn: datn+len, continue;
one, goto pl(idle):;
setdrst: drst+len+lsrccms, continue;
one, goto pl(idle);
clrdrst: drst+len, continue;
one, goto pl(idle);
clrint: intl+len, continue;
one, goto pl(idle);
sdtreq: dtreg+len+lsrccms, continue;
one, goto pl(idle);
cdtreq: dtreg+len, continue;
one, goto pl(idle),
stponl: tponl+len+lsrccms, continue
one, goto pl(idle);
ctponl: tponl+len, continue;
one, goto pl(idle);
strint: trint+len+lsrccms, continue;

one, goto pl(idle);

~antiniie .
LL.LIILTJ.CLA, concinue,

one, goto pl{(idle);

stprst tprst+len+lsrccms, continue;
one, goto pl(idle);
ctprst tprst+len, continue;
one, goto pl(idle);
.ORG 63#d
lareset, continue;
end.

Figure 9-9. QIC-02 Controller Source Program Listing (Sheet 2 of 2)

address (PC+1). The IDLE loop continues in this
fashion to select and test CCM input conditions
and branch accordingly.

Figure 9-9 is the FPC Microprogram source code
listing.

SCSl Interface: The second conditional test in the
Figure 9-8 shows the Valid Command (VCMD) idle loop is based on DDACK (disk DMA
This subroutine is called after the

routines. Each command from the processor will -

branch to one of these thirteen valid routines. All
of these routines are single instructions which set
(assert) or clear (deassert) output control lines,
which always include resetting the VCMD signal in
the Command Register and returning to idle.

acknowledge).
FPC has generated DDREQ (Disk DMA Request)
and the processor responded appropriately. The
DDACK signal also enables the SCSI bus
transceivers for transfer of data. Figure 9-7 shows
this call routine (SEL). The FPC asserts ARDY

9-16

output, to insure processor bus is open long
enough for transfer of SCSI data to main memory,
and selects BSYIN as CC test input. The FPC waits
for SCSI to assert BSYIN before proceeding.
BSYIN indicates that the disk is using the SCSI
bus. At this time, ARDY can be deasserted, since
the data byte is in main memory, and FPC can
returnto idle at point of exit.

The IDLE Loop then conditionally tests the signal
DREQ. If DREQ is asserted, then a jump to the
DMAXFER routine takes place. DREQ stands for
disk request for data. This signal is generated by
SCSI during data transfer, write to or read from
disk, as the handshake with acknowledge (ACK)
from the FPC. Detecting DREQ being asserted
causes the FPC to begin single byte DMA transfer
to/from main memory.

First, the FPC asserts DDREQ (disk DMA request)
on DMA Request Channel 0 (DRQO) as an input to
Processor (80188). The processor acknowledges
this DMA request by asserting DDACK (disk DMA
acknowledge) which is an input to the CCM.
DDACK is the PCS1 (programmable chip select

#1) from the processor. PCS1 is qualified (gated)
with DEN, also from the processor, to enable the
SCSI transceiver onto the internal 8-bit data bus.
Direction of this transceiver is controlled by the 1/0
signal from the SCSI control bus.

After detecting DDACK asserted, FPC then
deasserts DDREQ output, asserts output ARDY
(to extend 80188 DMA bus cycle) and sets output
to LADDR (addressable latch) which asserts DACK
(disk acknowledge). DACK is asserted to SCSI
(through LADDR) to continue the data byte
transfer handshake (refer to SCSI timing diagram
Figures in Appendix B). The CCM is selected for
DREQ input. After DREQ is again asserted by
SCSI, the transfer is complete. DACK and ARDY
are deasserted by the FPC and flow returns to idle
loop. This DMA transfer routine is used for both
writes to and reads from SCSI since the only
difference in timing signals is the 1/O directional
signal which is controlled by SCSI.

QIC-02 Interface. The next conditional jump
instruction tests TACK (tape QIC-02
acknowledge). TACK from QIC-02 is the

80188 DATA BUS
Am29845A Am29845A Am29845A | NODEADDRESS
REGISTER
INTDTA (0:7) ‘
s
NODEADDRESS
COMPARATOR
) 16L8 e - 8
{ %
4
Z L 4y ARB
EQU l
Am29834A
7438 7438

L I

SCSIDATABUS

06591A 9-10

Figure 9-10. SCSI Advanced Features Upgrade

9-17

handshake signal used with XFER from FPC to
transfer data (see QIC-02 timing diagrams in
Appendix B). With TACK asserted, a jump to
RDXFER (read transfer from tape) takes place. All
of the QIC-02 processing flow is shown in sheet 2
of Figure 9-7. In a similar fashion to SCSI data
transfer, QIC-02 data is a DMA to/from main
memory using DMA Request Channel 1 (DREQ1)
of the processor.. DTREQ is asserted by the FPC
(through LADDR) and ARDY is asserted to the
processor through CCM. Next is a conditional wait
until the processor acknowledges this DMA REQ
via DTACK (input to CCM and QIC- 02 Data Bus
Transceiver enable). After CC = PASS (i.e.
DTACK - condition asserted), DTREQ and ARDY
outputs are deasserted and the QIC-02 read timing
handshake continues with a return to the idle loop.

The next conditional test in the idle loop is for a
tape write cycle, indicated by both DTACK and
DTREQ being asserted. The WRXFER routine
shown in Figure 9-7 matches QIC-02 timing
requirements. as discussed in Appendix B. The
flowcharts for FPC routines include the tape
transfer commands and processor interrupts . on
tape exception conditions.

QIC-02 requires different timing during tape write,
read, command, and for tape rewind, which has
been divided into separate FPC routines which are
interactive with the processor. It begins a tape
access by issuing “set on line” (TPONL) valid
command and ends tape access with “clear on
line” (TPONL). The microprocessing unit section
above discusses this interaction.

EQU = INTDTAO0 * DEVADRO
+ INTDTAl1 * DEVADRI1
+ INTDTA2 * DEVADR2
+ INTDTA3 * DEVADR3
+ INTDTA4 * DEVADR4
+ INTDTAS5 * DEVADRS
+ INTDTA6 * DEVADRG6

+ INTDTA7 * DEVADRY7

Figure 9-11. Node Address Comparator PAL Device
Equation

9.3 ADVANCED FEATURES OF SCSI

This design can be upgraded to include SCSI bus
arbitration, initiator reselection and operation as
target as well as initiator. These features are
required in a multiple initiator, multiple target
environment.

The logic shown in Figure 9-10, when added to
the original design, accomplishes the above. It
also provides the means for transferring
commands, status, messages, and target selection
information via 80188 programmed I/O transfers.
For support of target mode operation, it is
necessary to provide SCSI bus drivers and
addressable latches for the following SCSI signals:
REQ, C/D, /O, MSG, and SEL (not shown).

SCSI bus node addresses are one bit in length.
That is, each node is assigned one of eight
possible addresses corresponding to one of the
eight SCSI bus data lines. During the SELECT
phase of bus operation, a node must only test one
bit of the data bus to determine if it is being
selected. Similarly, during the ARBITRATION
phase, the node that is asserting the highest bit on
the data bus “wins” control of the bus.

Before allowing SELECTION or ARBITRATION,
the 80188 must first load the SCSI “Node Address
Register”. This register is used as a mask register
to determine which bit of the SCSI data bus will be
tested during SELECT/RESELECT and which bit
will be asserted by this node during the
ARBITRATION phase.

9.3.1 Selection (Target reselecting Initiator /
selection as Target)

The SCSI bus SEL must now be tested in the
Am29PL141's idle loop. If asserted, the
Am29PL141 tests the SCSI bus “address
compare bit - EQU" (16L8 shown in Figure 9-11)
and the SCSI bus BSY signal. If this SCSI node is
being addressed and BSY is not asserted; then,
the Am29PL141 branches to a routine that will
monitor SCSI BSY; else, it returns to its idle loop.
To monitor BSY, the Am29PL141 uses one of its
internal counters to “time out” a 400 nsec bus free
period and then retests SCSI BSY. If the bus is still
free, this node is being SELECTED/
RESELECTED and the Am29PL141 will interrupt
the 80188 which would then take the necessary
action. If the bus is not free, the Am29PL141
returns to its idle loop. The 80188 interrupt
handler should test the status of SEL and the
“address compare bit” to determine that this is a
SELECT/RESELECT interrupt.

9-18

9.3.2 Arbitration

To initiate the ARBITRATION cycle, the 80188
issues a command to the Am29PL141 to set an
“arbitration request flip-flop ARBRQ". This is
another addressable latch bit controlled by the
Am29PL141 and subsequently monitored in the
Am29PL141's idle loop. If the ARBRQ bit is set,
the Am29PL141 will then test SCSI BSY, and if
asserted, the Am29PL141 returns to its idle loop.
If ARBRQ is asserted and the SCSI bus is not
busy, the Am29PL141 will interrupt the 80188,
assert the address for this node onto the SCSI
bus, assert BSY and begin monitoring SCSI SEL.
The address for this node is asserted onto the
SCSI bus via the 7438s and a new control bit
“ARB". (See Figure 9-10.)

The Am23PL141 will now continuously monitor
SCSI SEL and the ARBRQ signal. The asserting
of SEL during the arbitration process indicates that
another SCSI device has assumed control of the
bus and this node should abort the arbitration
process. The assertion of SEL causes an
“arbitration failed flip-flop” to be set by the
Am29PL141. This bit would be added to the
status bits readable by the 80188. Also, the
deassertion of ARBRQ indicates that the 80188
has terminated the arbitration process. In either
case, the Am29PL141 will deassert BSY, remove
this node's address from the bus, and return to its
idle loop.

The 80188 interrupt processing routine is
responsible for reading the SCSI data bus and
determining whether this node is the highest
currently requesting the bus. If this node has lost
the arbitration process, ARBRQ should be
deasserted to allow the Am29PL141 to return to
its idle loop and then reasserted to begin the
process again. If this node appears to have won
the arbitration process, the interrupt handler
should first check the “arbitration failed flip-flop”
before entering the SELECTION phase. This final
check is required to insure no other device issued
a SEL while the 80188 was responding to the
interrupt.

9.4 SUMMARY

This design solves the problem of interfacing older
generation tape drives (QIC-02) to modern
computer peripherals onthe SCSI bus.

The use of the Fuse Programmable Controller and
two programmable array logic devices
(AmPAL22V10s), allows the implementation of
this complex controller with minimum component
count, off the shelf standard parts, (see Figure 9-
12) and is reconfigurable/upgradable through
reprogramming. This design should also give
insight into the versatility of the FPC and ease of
using this device for new designs.

PARTS LIST
DEVICE DESCRIPTION QUANTITY
Am29PL141 Fuse Programmable Controller 1
80188-1 10MHz, 8-bit Microprocessor 1
Am2947 Octal Bidirectional Transceiver 1
Am29843A 9-bit Latch, Non-Inverting 2
Am2958 Octal Buffer, Inverting 2
AmPAL22V10 24-pin Programmable 2
Array Logic
Am2950A 8-bit /0 Port with Flags 1
Am29834A Parity Bus Transceiver, 1
Inverting
Am29864 9-bit Transceiver, Inverting 1
Am29828A 10-bit Buffer/Driver, Inverting 1
7438 Open-Collector Drive 2
Am29827A 10-bit Buffer/Drive,
Non-Inverting 1
Am27512DC 512K-bit UV EPROM (250 ns) 1
*AmPAL16L8A 20-pin Programmable 1
Array Logic

*Use for the five 2-input “OR” gates and for the
one 2-input “AND” gate.

Figure 9-12. SCSI and QIC-02 Controller Parts List

9-19

" CHAPTER 10

HIGH SPEED DMA CONTROLLER USING Am29PL141

10.1 SYSTEM OVERVIEW

In this application, the Am29PL141 Fuse Program-
mable Controller (FPC) is used to control two hard-
ware blocks that are sequenced at a rate greater
than 10 MHz. This application illustrates the power
and flexibility of the Am29PL141 in distributed
control applications.

The subsystem controlled by the FPC is just a
small part of a large computer system. From the
viewpoint of the main central processing unit
(CPU), this subsystem is an asynchronous
peripheral. The peripheral’s function is to control a
direct memory access (DMA) channel. This chan-
nel links the main CPU’s memory to a digital signal
processor’s (DSP) memory. Figure10-1 shows the
various hardware blocks which comprise the DMA
channel interface. All operations are initiated by
the main CPU. Once a command is passed to the
subsystem, the main CPU is free to do other tasks.
The DMA interface signals the completion of a task
by generating an interrupt in the main CPU. A
typical command consists of transferring data
(totally under the control of the Am29PL141)
and/or processing data (controlled by the DSP
engine and the Am29PL141).

The overall system can be viewed as a digital signal
processor (DSP). It performs high speed data
acquisition, digitizing several incoming analog
channels. The processor utilizes DSP techniques
to modify and/or extract information from this data;
the resulting outputs are converted back to analog
signals.

By their nature, many DSP algorithms operate on
blocks of Data. In this particular application, the
incoming channels consist of various speech sig-
nals. After digitalization, the speech bandwidth is
compressed using linear predictive coding (LPC)
techniques. A 64 kbit/sec channel is compressed
to a 2.4 kbit/sec data stream using LPC. Six com-
pressed input channels are multiplexed over one
serial link. Simultaneously, the processor receives
a multiplexed LPC data stream. It demultiplexes
this data and expands the compressed data
resulting in analog speech output channels.

Real time constraints mandate a high speed DMA
controller to orchestrate the filling and emptying of
the LPC data RAM. Incoming channels of raw

speech data are stored in this RAM. Once avail-
able, the processor invokes an analysis routine
that extracts the LPC parameters. This parametric
information is multiplexed and transmitted over
one serial link. In the other direction, received LPC
parameters are demultiplexed. A synthesis routine
is then invoked which reconstructs the speech
signals. These reconstructed speech waveforms
are stored in the data RAM. The Am29PL141 not
only controls the DMA channel, but also performs a
sequencing function assisting the subsystem’'s
DSP engine.

The following sections describe the CPU-FPC
interface, the FPC output lines, the use of 27S18
and Am2940 for address generation, and finally
the microprogram for this application. A more
complete discussion of the Am29PL141 FPC is
given in Chapter 1 and Appendix E.

10.2 CPU-FPC INTERFACE

Whenever the CPU desires service from the DSP
subsystem, it issues a command by placing itin a 5-
bit instruction register. This register's outputs are
available to the FPC as T[4:0]. The CPU sets the
valid instruction flip flop to indicate the presence of
a new command. The flip flop output is connected
to the FPC's CC test input. While idle, the FPC
interrogates this flip flop. When a new command is
detected, the FPC commences execution of the
instruction. Upon completion, the valid instruction
flip flop is cleared (using P[11]), and a status bit is
output to the CPU. Data passes between the
main CPU data bus and the DSP data bus via a
specialized 16 bit bi-directional /O port. In
addition to buffering data during transfers, the I/O
port is used to initialize the DSP data RAM.

There are actually 14 different instructions
represented in bits T[3:0]. T[4] is used to tell the
DSP engine to perform calculations with the DMA
interface generating the addresses.

Three groups of CPU commands are defined:
1. Data Transfer In (to the DSP memory) — 6

2. Data Transfer Out (from the DSP memory) -7
3. DataMemory Initialize — 1

10-1

The number following each group name denotes
the number of instructions within that group.

Any instruction in the Daia Transfer In group can
additionally have T[4] as a qualifier. When T[4] is
negated, the DMA interface only transfers data in
to the DSP memory. When T[4] is asserted, the
DMA interface serves as the address generator for
the DSP engine for a particular task after the data
transfer is complete. By reexamining the CPU com-
mand, the FPC determines how many addresses it
needs to generate for the task.

Instruction decoding is a simple task in the
Am29PL141 using its multiway branch instruction.
In this application T[3:0] are masked and a branch
to one of sixteen locations is taken as determined
by the pattern present on T[3:0]. Subsequent
paths taken are derived from this multiway branch.

10.3 Am29PL141 CONTROLLER

The Am29PL141 is the heart of the DMA inter-
face. Once the CPU passes a command, the FPC

under its control. When a new instruction is
detected, the 29PL141 decodes it by reading it in
on its TO-T4 test inputs. The DONE output of the
Am2940 is connected to the FPC T5 test input for
signaling the completion of an address sequence.
When an input instruction is decoded, control
branches to the appropriate control sequence.

A 64 x 32 bit PROM resides on the Am29PL141.
The upper 16 bits of each word are used to control
the on-board sequencer. The functions of these
bits are defined by AMD and are not alterable by
the user. The lower 16 bits of each word are
brought out through a pipeline register as output
lines and are user-defined (P15-P0). Appendix E,
the Data Sheets, defines the microinstruction word
indetail.

The control data that appears at the outputs
(P[00:15]) of the FPC depends on the type of
instruction. Five bits (P[00:04]) are used as an
address to a 32 x 8 lookup PROM. Four bits
(P[06:09]) provide instructions and control to an
Am2940 high speed DMA address generator.
Two bits (P[10], P[12]) control the specialized

takes over. All data transfer operations are bidirectional I/O port between the two processor
INSTRUCTION DATABUS
FROM MAIN PROCESSOR STATUS
l l 4 4
, -
INSTRUCTION - VALID INSTRUCTION oLR . CLOCK A16
REGISTER 2 CNTRL
/5
cC P11
T0-T4 P15
15 P13,P14
MEM INIT
P12 BUFFER
’ AND
P10 BUSENABLE LOGIS
Pog WCl //16
PO6-P08 lo-12 D
DSP
Am29PL141 DATA
P00-PO4 AO-A4 Am2940 < APAM
5 16 16
D - Do-D7
27818
@
DONE
06591A 10-1

Figure 10-1. DMA Channel Interface

10-2

data buses. Finally, two bits (P[13], P[14]) are
used to control the clock source to the Am2940
address generator. P[15] signals the main CPU
whenthe execution of a command is complete.

Figure 10-2 illustrates the assignment of the 16
Am29PL141 output lines.. These output lines are
controlled by the FPC microprogram instructions.
One-half of each microinstruction word is used to
specify these outputs. All but one of these lines
are used in this application. These 16 output lines
are grouped into eight fields of varying widths.
The specifics of each field, the field width, and the
type of micro-operations performed, are as follows: -

PROM Address Control

The 5 bit field formed by P[4:0] is named A[4:0].
After a CPU command is decoded, the FPC
determines which block of data RAM is to be
accessed and its length. The starting address of
each block and its length are stored in the look-up
PROMs. A[4:0] provide the addresses to the
lookup PROMs for each new DMA operation.

DMA Address Generator Control

P[8:6] form a 3 bit field named [[2:0]. These bits
are the instructions for the Am2940 address gen-
erator. Operations performed by the field include
reading and writing various data and control
registers onthe Am2940.

DMA Count Control

P[9] is a one bit field named CNT wired to the ACI
and WCI inputs of the Am2940. The signal
enables the counting operation of the address
generator. This effectively provides clock control
in addition to the external clock circuitry.

Data Bus Interface Control

Bits P[10] and P[12] form two one-bit fields for this
function. P[10] is named BEN and controls data

transfers between the two CPU data buses. When
it is asserted, transfers are allowed. P[12] is named
ZEN (Zero Enable). When asserted, it overrides
BEN for transfers into the DSP data memory and
instead places zeroes on the data bus. This
feature is useful for initialization in certain tasks. By
having the DMA controller provide this function,
the DSP is offloaded and subsequently has more
time for performing calculations.

Instruction Status

P[11] and P[15] form two one-bit fields used in
conjunction with the CPU instruction interface.
P[11] is named CLR. This bit serves as the clear
signal to the valid instruction flip flop. This flip flop
can only be set by the main CPU and reset by the
DMA controller. When an instruction is completed
by the DMA controller, it resets this flip flop. The
FPC idles until the main CPU sets this flip flop
indicating the presence of a new instruction in the
instruction register.

P[15] is named DNE and is sent back to the main
CPU. When asserted by the FPC it indicates that
the DMA subsystem has completed the execution
of acommand and is awaiting a new one.

Clock Control

P[14:13] form a two bit field named CK[1:0].
These bits control the source of the clock to the
Am2940s. Three selections are possible: 1) sys-
tem clock; 2) system clock shifted by 180°; and 3)
clock inhibit.

10.4 ADDRESS GENERATION

Several channels of data are stored in the DSP
data RAM. For each channel, the DMA controller
must input to and/or output from the proper sec-
tion of the memory. Generation of the appropriate
addresses is handled by two Am27S18SA PROMs
and two Am2940 address generators.

P15 P14 P13 P12 P11 P10 P09 P08 P07 P06 PO5 P04 P03 P02 PO1 P00
DNE| CK1| CKO| ZEN| CLR| BEN|CNT| I2 I 10 Ad | A3 | A2 | A1 | AO
N N N S ~ - ~ -~ ~
INST MEM BUS 2940 PROMADDRESS
STATUS INIT . ENABLE INSTRUCTION CONTROL
ENABLE CONTROL
CLOCK INST 2940
SELECT ACK COUNT
CLR CNTRL

06591A 10-2

Figure 10-2. Format of User Output Portion of Am29PL141 Microcode

10-3

The FPC determines a starting address and a block
length from a decoded instruction. The actual
values of this data are stored in the Am27S18SA
lookup PROMs. Two five-bit addresses, represen-
ting the starting address and block length are
presented to the PROMs. The data outputs of the
PROM are routed to the Am2940s on their data
inputs (D0-D7) and loaded into the appropriate
registers. Once initialized with these “seed” val-
ues, the Am2940s provide sequential addresses
to the DSP data RAM until the word count expires.
The DONE signal from the Am2940s alerts the
FPC to this condition.

In addition to providing DMA addresses, this
section of the hardware generates addresses for
the DSP for certain processing steps that are time

sequentially step through the memory block
repeatedly. For these tasks, the FPC keeps track
of how many passes are required and issues con-
trol data to the address generators. Basically it
performs dummy DMA cycles where addresses are
generated but no data passes through the data
bus interface.

10.5 FPC MICROCODE

Figure 10-3 is the flowchart of the code
implemented for this application. A total of 45
words are used. This leaves ample room for future
modifications to the interface. Of the 45 locations
used, 30 are used for instruction decoding. How-
ever, while the FPC is decoding an instruction, its

critical. Some sections of the LPC algorithm control outputs are simultaneously loading values
| RESET l | CLEARCC l
NO C
TRUE
C YES
INSTRUC\'L![(_)I_N DECODE
MULTIWAY BRANCH
LOADSTART ADDRESS
&WORD COUNT
IN Am2940
LOADCREG WITH LOAD 1ST LOAD 2ND LOAD 3RD
WAIT STATES WC IN 2940 WC IN 2940 WC IN 2940
l WAIT WITH CREG I
ENABLE BUS & COUNT ENABLE
NO
S
CREG=0 YE
4
DECCREG e
06591A 10-3

Figure 10-3. DMA Controller Program Flow Diagram

10-4

into the Am2940s. This parallel operation allows
the data transfers to take place with a minimum of
overhead. By the time the instruction is decoded,
the Am2940 data-and control registers are Ioaded
and ready to start the transfer operation.]

After some wait states are executed the data
transfer commences. When finished, "T[4] is
tested. If asserted the FPC goes back and looks at
T[3:0] to determine how many passes it must make
through the data for the DSP engine. It then
commands the Am2940s to start the dummy DMA
cycles and runs until its pass count expires. A pass
count is easily implemented using the C Register
on board the Am29PL141. Between each pass
the Am2940s are reinitialized to point at the start of

a data block. When all passes are complete, the
CPU is notified, and the FPC waits for the next
instruction.

Figure 10-4 is a listing of the microcode described
above. It is written using an assembler written
specifically for the Am29PL141 by AMD. " This
software runs on an IBM PC/XT and is available
gratis to any designer using the Am29PL141.
Most of the code in this application was debugged
using a companion simulator also available from
AMD. Only real time timing aspects could not be
evaluated. Having this software available makes
the design engineer's job easier by minimizing the
amount of time spent translating concept to PROM
dataforthe FPC.

" : A HIGH SPEED DMA CONTROLLER "

device (pll4l)
default = 1 ;
define

The following mnemonics are the names assigned to the micro

operations in the eight different fields defined for P(15:0)

FIELD NAME = DNE

DONE
NDONE

= 0000#H
= 8000#H

" FIELD NAME = CS(2:0)

0000#H

CLK1 =
CLK2 = 2000#H
NOCLK = 6000#H

" FIELD NAME = ZEN

IMEM = 0000#H
NOIMEM = 1000#H

- " FIELD NAME = ICR

CLRINST
NOCLR

0000#H
0800#H

" FIELD NAME = BEN

BUSON
BUSOFF

0000#H
04004#H

" FIELD NAME = CNT

CNTON
CNTOFF

0000#H
0200#H

" FIELD NAME = I(2:0)

WRCR = 0000#H
REIN = 0100#H
LDAD = 0140#H
LDWC = 0180#H
ENCT = 01CO#H

Figure 10-4. DMA Controller Source Program Listing (Sheet 1 of 4)

10-5

" FIELD NAME = A(4:0)

begin

ADDO = 0000#H
ADD1 = 0001#H
ADD2 = 0002#H
ADD3 = 0003#H
ADD4 = 0004#H
ADD5 = 0005#H
ADD6 = 0006#H
wWco = 0008#H
wcl = 0009#H
wec2 = 000A#H
we3 = 000B#H
WC4 = 000C#H
wCs = 000D#H
wece = 0O0OE#H
we7 = OOOF#H;

" The first 16 locations form the branch table for decoding the
instruction bits present on T(3:0)

ZERO:

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTI1);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD1,
IF (CC) THEN GOTO PL(DTI2);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD2 ,
IF (CC) THEN GOTO PL(DTI3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DTI2);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD4,
IF (CC) THEN GOTO PL(DTI3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDS,
IF (CC) THEN GOTO PL(DTIA4);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADDO,
IF (CC) THEN GOTO PL(DTO1);
NDONE+CLK1+NOIMEM+NOCLR+BUSOF F+CNTOFF+LDAD+ADD1,
IF (CC) THEN GOTO PL(DTO2);
NDONE+CLK1+NOIMEM+NOCLR+BUSOF F+CNTOFF+LDAD+ADD2,
IF (CC) THEN GOTO PL(DTO3);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD3,
IF (CC) THEN GOTO PL(DTO4);
NDONE+CLK1+NOIMEM+NOCLR+BUSOF F+CNTOFF+LDAD+ADD4 ,
IF (CC) THEN GOTO PL(DTOl);
NDONE+CLK1+NOIMEM+NOCLR+BUSOF F+CNTOFF+LDAD+ADDS,
IF (CC) THEN GOTO PL(DTO2);
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+ADD1,
IF (CC) THEN GOTO PL(DTO3);

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+001F#H,

IF (CC) THEN GOTO PL(RESET) ;

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+REIN+001F#H,

IF (CC) THEN GOTO PL(RESET);

NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDAD+001F#H,

IF (CC) THEN GOTO PL(MEMINIT);

Figure 10-4. DMA Controller Source Program Listing (Sheet 2 of 4)

10-6

" The next 4 instructions have identical internal control but different
outputs on P(15:0). They are used for instructions in the DATA TRANS-
FER IN (DTI) group. They are also part of the instruction decoding."

DTIl: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCO,
IF (CC) THEN GOTO PL(DTIWAIT):;

DTI2: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WCl,
IF (CC) THEN GOTO PL(DTIWAIT);

DTI3: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC2,
IF (CC) THEN GOTO PL(DTIWAIT):

DTI4: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC3,

IF (CC) THEN GOTO PL(DTIWAIT):

" The next 4 instructions have identical internal control but different
outputs on P(15:0). They are used for instructions in the DATA TRANS-
FER IN (DTI) group. They are also part of the instruction decoding."

DTO1: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC4,
IF (CC) THEN GOTO PL(DTOWAIT)

DTO2: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC5,
IF (CC) THEN GOTO PL(DTOWAIT);

DTO3: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC6,
IF (CC) THEN GOTO PL(DTOWAIT);

DTO4: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,

IF (CC) THEN GOTO PL(DTOWAIT):;
" This instruction is executed for the DATA MEMORY INITIALIZE (DMI) group"

MEMINIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+LDWC+WC7,
IF (CC) THEN GOTO PL(ZWAIT);

" Program FPC for DTI wait states using the CREG "

DTIWAIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN LOAD PL(4):
NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN GOTO PL(WAIT1):

" Program FPC for DTO wait states using the CREG "
DTOWAIT: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
IF (CC) THEN LOAD PL(6):
WAIT1: NDONE+CLK1+NOIMEM+NOCLR+BUSOFF+CNTOFF+ENCT+001F#H,
WHILE (CREG <> 0) LOOP TO PL (WAIT1):
NDONE+CLK1+NOIMEM+NOCLR+BUSON+CNTON+ENCT+001F#H,
IF (TS5) THEN GOTO PL(CLEARCC) ELSE WAIT;
" pProgram FPC for MEMORY INITIALIZE function "

ZWAIT: NDONE+CLK1+IMEM+NOCLR+BUSOFF+CNTON+ENCT+001F#H,
IF (T5) THEN GOTO PL(CLEARCC) ELSE WAIT;

" Clear VALID INSTRUCTION flip flop (CC input to FPc) "

Figure 10-4. DMA Controller Source Program Listing (Sheet 3 of 4)

10-7

APPENDIX A
JEDEC STANDARD No.3

The fuse map generated by the Am29PL141
Assembler adheres to the JEDEC standard No. 3
(October 1983) whichis a standard data transfer for-
mat between a data preparation system and a
programmable logic device programmer.

The information to be sent to the device program-
mer is divided into the following categories:

The design specification identifier
The device to be programmed
Fuse links that must be blown to
implement the design

Information to perform a structured
functional test

Other information (e.g.,sumcheck)

> L=

5.

A transmission must consist of the following legal
characters. Any other characters present in the
transmission file may result in invalid operation.

STX 02 hex start of text
ETX 03 hex end of text

LF 0A hex line feed

CR 0D hex carriage return
all printable

characters 20 hex to 7E hex inclusive

The Assembler forms the transmission file by
putting the STX character at the beginning of the’
file, followed by the fuse link information, the fuse
checksum, the ETX character, and the trans-
mission sumcheck. An example Assembler trans-
mission (fuse map) file is:

<STX>F1*

L0000 0100101 111 111111 1111111111111000 *
CO2EF*

<ETX>0A94

Fuse Link Information

Each device fuse link is assigned a decimal
number. Each numbered fuse can have two
possible states: a Zero specifying a low-resistance
{(unblown) link and a One specifying a high-
resistance (blown) link.

Fuse information is presented in three fields: F, L
and C.

F: This field specifies the state of the unspecified
fuses in the logic device. This field corre-

sponds to the DEFAULT section in the
program source file. The default for this field is
‘F0’, all unspecified fuses unblown.

: Each numbered link is addressed by the ‘L'
field. The L is immediately followed by a
variable length decimal number indicating
address of the first link in the following string of
data. The string of data can be any convenient
length terminated by an . In the Assembler
each string is 32 characters long.

: This is the checksum field for the link
. information. It is computed by performing a 16-
bit unsigned addition of 8-bit words formed
from all the fuse link states specified in the file.

The 8-bit words are formed as in the following
diagram:

Example: Checksum Computation
<STX>F1*

L0000 0100101 111 111111 1111111111111000 *
CO2EF*

<ETX>0A94

link 7 0
1101 0010 — D2 hex -
1111 1111 FF hex
1111 1111 FF hex
0001 1111 1 F hex

02EF hex =checksum
Note:

If the number of fuse links is not a multiple
of 8, then the last word will be formed by
setting Zeroes for all the bit locations more
significant than the last link. The 16-bit
checksum is specified as a C followed by 4
hex characters and an **'.

OTHER INFORMATION

The transmission format is ended by an ETX
character followed by the sumcheck. The
sumcheck is the 16-bit unsigned addition of the
ASCIl values of all the characters in the
transmission file between and including STX and
ETX. The parity bit is excluded in this calculation.

APPENDIX B

QIC-02 AND SCSI INTERFACE SIGNALS AND TIMING DIAGRAMS

QIC-02 INTERFACE

QIC-02 is an industry standard which defines the
interface between a host system and Quarter Inch
Cartridge Tape Drives. Read/write commands,
status and, of course, data are transmitted over this
interface, as depicted in Figure B-1. The bus and
control signals between QIC-02 and host are all
standard TTL levels. Timing diagrams for this
interface are shown in Figures B-2 through B-4.
This interface handshake timing is duplicated for
the host side by the FPC and two AmPAL22V10s.

ACKNOWLEDGE (ACK) is used with Transfer
to transfer data across the interface.

READY (RDY) indicates that the tape drive can
accept a command. It is used to handshake the
command across the interface. In the write mode,
READY indicates that the drive's internal buffer is
empty and ready to receive new data. In the read
mode, READY indicates the drive buffer can now
be accessed by the host.

EXCEPTION (EXP) alerts the host that the
execution of a command has been terminated.
This may be a normal completion or an interrupt
due to a fault (hard errors, write protected, etc.).
The response by host must be READ STATUS.

DIRECTION (DIRC) indicates direction of data
flow. Signal is used to enable/disable the data bus

transceivers inthe HOST.

ON-LINE signal is deasserted at the beginning of a
read (fromtape) or write (to tape) operation.

RESET initializes the tape drive. The drive recali-
brates the heads to track zero.

REQUEST indicates that a command is on the
data bus.
TRANSFER is used with ACKNOWLEDGE to

handshake data over the bus, see timing diagram.

SCSI INTERFACE

Small Computer Systems Interface (SCSI) evolved
from the disk controller standard developed by
Shugart Associates (SASI) in the late 1970s. The
SCSI standard was developed by ANSI X3T9.2
subcommittee starting in 1982. SCSI defines an 8-
bit parallel bi-directional data bus with parity, plus
nine control lines. SCSI protocol allows single or
multiple host computers (initiators) to share multi-
ple (expensive) peripherals (targets, i.e. hard disk,
floppy disks, etc.), as depicted in Figure B-5. Up to
eight Daisy Chained devices can reside on the
SCSI bus, with data transfer rates of 4 Mbytes/sec.
Synchronous and 1.5 Mbyte/sec. asynchronous.
The timing diagrams for the interface are shown in
Figures B-6 through B-8.

ACKNOWLEDGE

READY

EXCEPTION

DIRECTION

. HOsT
SYSTEM

8 BITDATABUS

ONLINE

RESET

REQUEST

TRANSFER

06591A C-1

Figure B-1. QIC-02 Interface

The interface signals are:

/O is driven by a target to control the direction of
data movement. True indicates input to the
initiator.

MSG is drive by a target to indicate "Message
Phase". When MSG is asserted, REQ (Request) is
also asserted by the target for transfer of data byte
indicating the end of the operational phase
("Message").

REQ asserted by target indicates that a data byte
is to be transferred on the data bus. Data byte is
transferred via handshake with ACK
(Acknowledge).

ATN (Attention) is driven by an initiator to indicate

to target an "attention" condition.

An initiator uses SEL along with appropriate data
(address) bits (0-7) being asserted to select a
target. Select line is deasserted after the target
asserts BSY to acknowledge selection.

RST (Reset) is a pulse asserted by the initiator to
stop target's present operation and return same to
idle condition.

Data bus and contro! signals require open collector
drivers capable of sinking 48 mA each to support
SCSI mode of multiple initiators with multiple
targets. SCSI provides for either single ended (6
meter max. cable length) transmission or differ-
ential (if a distance up to 25 meters is required).

B-2

welbelq Buiwil puewwo) sniels peayd 20-0I0 “¢-9 ainbi4

20 V16590
SNOLLIANOD 3NOS HIANN sT 005 < 38 AV SIHL ‘310N,
\zm._.‘ 1>2L1-1bL 3
VNST 0<22i-leL YO LNOG- X _ _
s1 0<|21-021 AQV3H S13S HITIOHINOD - 221 s &Aﬁ&.z_. >mumwm%w %ﬁwmmzmw uoﬁ
PLLSY w\“ﬁ NOILO3HIQ SNA SIIVHO mﬂ%ﬂ%ﬁw - .m» VN NOILO3HIA SN SIONVHO HITIOHINOD - 8L
€11 SV 3NVS €11 SV INVS-6L1 s1 001>/1-51>02 AQV3H S13S3H H3TIOHINOD - LL
ZLLSY 3NVS ZLL SV 3NVS-8IL st 0<g 11 QIVANI V1vVa Sng - 9L
111 SV 3NVS LLL SV 3NVS - 211 s 0<§1—¥1 1S3nN03Y S13S3H 1SOH — SL
011 SV VS OLL SV 3NVS-911 . s1005>1-21>02 AQV3H S13S HITIOUINOD - vl
VN SNBOL LA SNLVIS ISV1-SiL s Ol<pi—€l NOILd30X3 S13S3H H3TIOHINOD — €1
siog<pll-tiL 1S3N03Y S13S3H ISOH- 1L slo<el-lL 1s3n03d mmw Mwn - m»
sio<gil-til GrVANI V1Va SN8-€11 VN SN8 O1 ANVWWO!
s 1>211-1LL AQV3H S13S3H HITIOHINOD-2LL
VN 1S3M034 S13S LSOH- +11 ONINIL TVOLLIHO ALALLOV

13534

,E./,

ol (¢}

/ y3dx

/ SNLYLS Qv

x 31A8 SNLVIS 1St x ANVIWWNOD x snaviva

€L 61/ E18 L
NOILd30X3
€L

7 N

vL
AQvay
s31Ag
SNLVLS
ONINIVW3H sL el 1S3nO3Y
aN3s X

3INIINO

B-3

ERR 59 put a number or a defined name here
Warning: Syntax error

User Action: Put a valid number or predefined
name here

ERR 60 put a constant or a number here
Warning: Syntax error

User Action: Put a valid number or predefined
constant here

ERR 61 put a ‘.’ after END to terminate the
assembler file

Warning: Unexpected end of file

User Action: Include a ‘.’ after the keyword END

ERR 62 put a ‘" for labels or *,’ for output
Warning: The punctuation symbols ‘’ or ‘' are
necessary to separate sections in each statement
User Action: Use ' or ‘)

ERR 63 put a *,” to separate the output section
Warning: The *,” symbol is required here
User Action: Puta‘;

ERR 64 put a ‘;’ here

Warning: The ;' symbol is necessary to separate
program sections or statements

User Action: Put a ‘;’ as a statement separator

ERR 65 put a name here

Warning: A valid predefined constant is necessary
here

User Action: put a predefined name here

ERR 66 put a ‘TO’ here : loop TO PL

Warning: LOOP must be followed by the keyword
(TOO

User Action: put the keyword “TO"

ERR 67 put an operand between logical operators
Warning: Logical expression is incorrect
User Action: Put an operand between *’ and ‘+’

ERR 68 put an operand between nested
operands

Warning: Logical expression is incorrect
User Action: Put an operand after the ‘(’

ERR 69 put an operand here

Warning: Syntax error

User Action: Match an operand with this logical
operator

ERR 70 put an operand or ‘)’ to complete the
expression
Warning:
operand
User Action: Check logical expression

Unmatched parenthesis or missing

ERR 71 put an operator between operands
Warning: Logical operators “' and ‘+' cannot follow
each other
User Action: Check the logical expression/
equation

ERR 72 put PL , TM, or SREG here

Warning: Incorrect statement syntax

User Action: Put GOTO PL, GOTO TM or GOTO
(SREG)

ERR 73 redefinition of label
Warning: Label has been redefined
User Action: Check label names

ERR 74 separate the output section with a *,’
Warning: Syntax error
User Action: Put the necessary *," here

ERR 75 Severe warning : redefinition of PROM
location *** See source line ***

Warning: PROM location specified more than
once

User Action: Check the flow of your microprogram;
some statements may have overlapped due to the
use of numbers as labels

ERR 76 SOFTWARE error ...
module

Warning: The program cannot form the PROM
word properly

User Action: None

see WRITE WORD

ERR 77 specify the pipeline data field
Warning: Syntax error
User Action: Specify a data field in PL(data)

ERR 78 Statement *** not supported in ***
Warning: This statement combination does not
correspond to any device mnemonic

User Action: Check the list of available statements

ERR 79 this condition has not been defined
Warning: Undefined test condition

User Action: Pair this identifier with a test condition
in the DEFINE section

ERR 80 this is a keyword
Warning: Cannot use this keyword in this context
User Action: Use a different variable name

ERR 81 this is not a binary humber
Warning: Not a binary number
User Action: use ‘#b’

ERR 82 this is not a decimal humber
Warning: Not a decimal number
User Action: Use ‘'d’

B-4

GNVYNOD
SNLVLS

B3

SdOL1S
NOLLOW

wesbelg Puiwi] puewwo) eleg pedd 20-OI0

‘t-g e.nbid

-0 V16590
SNOLLIGNOD 3NOS H3ANN
911005 < 38 AV 3NLL SIHL *3LON.
ZLLSV3INYS HOV S13S HITIOHLNOD - 2L

YN NOILO3HIQ SN8 IONVHI - 681 VYN SN8 OL 31AE 1SI -S2L s o<€LL-2ell H34X S13S 1SOH €11

VN NOILd30X3 S13SHITIOHINOD - 8EL VN AQV34 S13S HITIOHLINOD - ¥2L UOL<TLL-ILL MOV S13S HITIOHLINOD -2hL

LI1SY 3INVS H3JX S13S34 LSOH - 261 11 SV3NVS Y34X S13S3YH 1SOH - €21 VYN AQV3H S13S H3TIOHINOD ~iLiL

911 SY 3INVS GITVANI Viva Sng - %€l 911 SV 3INVS QTVANI V1va Sn8 -22L VN SN8 0L IIABVIVG 1St —0LL

SL1SY 3NVS ROV S13S3H HITIOHINOD - SEL S11 SV 3INVS MOV S13S3H HITIOHINOD — t2L VN DHI0 SIONVHO U3 TIOHINOD ~ 61

€11 SY 3NVS Y3IX SALS LSOH - 6L €11 SV 3NVS Y34X S13S L1SOH -02L 1 001>81-91>02 AQV3H S13S34 H3ITIOHINOD - 8L

CLLSY 3NVS MOV S13S HITIOHLNOD ~- €81 ZLLSVINVS . MOV S13S HITIOHLONOD —61L1 ol 0</1-GL QITVANI VivaSng - 41

VN SNE OL 31A8 1SV1-2EL YN si0<91-5L 1S3N03Y S13S34 1SOH ~ 9L

LL1 SY INVS Y33X S13S3H LSOH - €L QVAViVASNE -8iL 1 005>S1-¥1>02 AQV3H S13S U31I0HINOD - Si

911 SY INVS QIVANI Viva SN8-0€L s o</1L-GiL Y33X S13S3H 1SOH - 411 s 1>p1-€1 AQY3H S13S3Y UITIOHINGO — 7L

S11SY INVS ¥OV S13S3H YITIOHLNOD - 621 sl o<gLi-€il QTVANI V1Va SNE —9iL sio<€l-eL 1S3n03Y S13S 1SOH - €L
PILSYINVS AQV3H S13S3Y H3TIOHINOD - 821 s> g>511€11>60 MOV S13S3H HITIOUINOD —SiL VN 3NIINO S13S 1SOH - 2L

811 SV INVS H33IX S13S LSOH - 21 s i>yi €11 AQV3H S13S3H YITICUINOO ~¥il VN SN8 0L GNVINNOD LSOH - 1L

ONINLL TVOLLIHD ALINLOV ONINIL TVOLLIED ALALLOY ONINIL TVOILIND ALIALLOV

43S
8L
seL €51
281
L
9€L 2L
y MUV 34 %0018 1SV1 ﬁ XMCEB_ x
ETVA:BL 4]
Il/ﬂh

1S3n03d

el 3INNNO

B-5

COMPUTER | ,HOST CONTROLLER
SINGLE INITIATOR, SINGLE TARGET W
COMPUTER [,HOST SCSIBUS CONTROLLER Tg)
CONTROLLER
SINGLE INITIATOR, MULTI TARGET W
comPUTER | ,HOST SCSIBUS CONTROLLER ﬂ
compuTer | ,HOST :> CONTROLLER m
:> CONTROLLER [-—————
OO
Q CONTROLLER
COMPUTER | ,HOST m CONTROLLER

MUILTI INITIATOR, MULTI TARGET

06591A C-5

Figure B-5. Possible Bus Configurations

Ts) LOGIC ONE

2
Rt

MSG LOGIC ONE

9.
t

&\ . S

oeerer X X XX, X XBeX X

06591A C-6 ‘ 1
 B-6_SCSI Command Phase Timing
MSG LOGIC ONE .
cid \
1o \ .
=\ / ./
ACK \ / U
FIRST W LAST
oso(e) X XX X, X XEIX X
06591A C-7 :
B-7 SCSI Data Read (from disk) Timing
110 LOGIC ONE
MsG LOGIC ONE
c/b / N
REQ \ / \ /
ACK \ / \ /
' k FiQST t RSt
oz X XEREX X X X#EX X
06591A C-8

B-8 SCSI Data Write (to disk) Timing

B-7

APPENDIX C

 SOFTWARE SUPPORT

C.1 Am29PL1XX ASSEMBLER
Assembler Features

The Am29PL1XX assembler provides high-level mi-
croprogram development support for the
Am29PL100 family of parts (Am29PL141,
Am29PL142, Am29CPL141, Am29CPL142 and
Am29CPL144).

With the inclusion of high-level language constructs,
such as IF-THEN-ELSE and WHILE the
microprogrammer’s task is greatly simplified since
the microcode is written in a logical and more natu-
ral flowing syntax. In addition, documentation of
code is significantly enhanced since the microcode
is expressed in a more readable and easy to follow
format.

Assembler features include:

« high-level language constructs
IF-THEN-ELSE
WHILE
« binary, octal, decimal, and hexadecimal numbers
are recognized
« jump/branch to labels
« logic equations for control outputs
« error detection and diagnosis
« default test condition
» JEDEC standard fuse map output
« symbol table output

Error Detection and Diagnosis

Much effort has been made to provide relevant
syntax error detection and diagnostic messages in
order to facilitate debugging of errors occurring in
the microcode. Note that one error may cause
spurious errors to propagate through the assembler
source file because the assembler expects a cer-
tain sequence of symbols. The assembler does not
understand the microcode’s intent or purpose.
Correcting the first error and other meaningful er-
rors will remove spurious errors.

The assembler will check the input file to determine
that no conflicts exist in the use of input pins that

double as Serial Shift Register. (SSR) pins, which

are used for customer diagnostics/testing.

System Requirements

The following hérdware and software are required
to use the assembler:

Hardware (minimum configuration):

- an IBM PC/XT or other PC-compatible,
NEC9800, with at least 256K bytes of RAM
memory : ‘

Software:

- PC-DOS Version 2.0 or higher, or MS-DOS
Version 2.11 or higher

- Aword processor to create the assembler source
file. Any word processor that produces stan-
dard ASCII output files is acceptable (example:
Wordstar operating in non-document mode).

The following files are on the Am29PL1XX Assem-
bler disk:

Filename Description
ASM14X.EXE Am29PL1XX assembler
PL141 Am29PL141 database file
PL142 Am29PL142 database file
CPL141 Am29CPL141 database file
CPL142 -Am29CPL142 database file
CPL144 . Am29CPL144 database file
COFFEE.EXP Source file for coffee machine
example
MAKE_CPY.BAT Batch file for making copies and
. backups

C.2 Am29PL1XX SIMULATOR
SIMULATOR FEATURES

The Am29PL1XX simulator provides high-level in-
teractive simulation capability for the Am29PL100
microprograms. Along with the assembler, it helps
to verify Am29PL100 designs completely before a
device is programmed. The simulator supports
functional simulation only. It does not provide any
timing simulation.

The Am29PL1XX simulator uses the JEDEC fuse
map file (generated by the Am29PL14X Assembler)
and a test-vector file as its inputs (Figure C-1).

C-1

Based upon the contents of the JEDEC fuse map
and the test vector file, it generates “computed
output signals” and compares these against ex-
pected output values as specified in the test vector
file. If any differences are detected, the simulator
flags the errors by displaying a “?” under the un-
matched output signals.

Am29PL1XX Simulator Distinctive
Characteristics

allows the user to preload or change all internal
registers (interactively)

displays complete status information including all
input pin signals, computed and expected output
signals, contents of all internal registers

break point capability

single step capability

interactive mode of operation

another program can be executed during
simulation

Simulator Requirements
The following steps ar required to run the simulator:

A. Write and assemble a microprogram source file

Write a microprogram using the Am29PL14X as-
sembler language. Then use the Am29PL14X as-
sembler to assemble the program. The assembler

will generate the corresponding JEDEC fuse map
file to be used by the simulator.

B. Create test vectors file

The test vectors file can be written in a symbolic
format.

Keeping microprogram source and test vector files
separate allows one simulation model to have a set
of different test vector files.

C. Execute simulation

After the source program is assembled and the test
vectors file has been generated, the simulator is
ready to run.

The simulator model is designed to reflect the
Am29PL100 device as much as possible. Initially,
applying a software asserted RESET signal to the
simulator is the same as applying a RESET to the
Am29PL100 device.

Note that the Am29PL1XX simulator provides func-
tional simulation only - no timing simulation. The
simulator assumes 0 propagation delay. However,
the clock pulse must be specified as one of the
inputs in the test vectors to get register transfers
and to compute outputs.

USER
SYSTEM
DATABASE YT
ASSEMBLER TEST VECTOR
INPUT FILE INPUT FILE
Am29PL1XX
ASSEMBLER
ERROR PROM BIT JEDEC FUSE
FILE PATTERN MAP
PROM
PROGRAMMER SIMULATOR

Figure C-1. Simulator/Test Vector Environment

C-2

APPENDIX D

REFERENCES

Advanced Micro Devices Programmable Logic Handbook, 1986.

Advanced Micro Devices Bus Interface Product Specifications, October 1985.
Advanced Micro Devices Am29PL 141 Data Sheet, September 1987.
Advanced Micro Devices 80188 Data Sheet, October 1985.

Small Computer Systems Interface (SCSI) Specification as defined by ANSI X3T9.2
Committee.

Quarter Inch Cartridge (Tape Interface) (QIC-02) Specification.
PDP-11 Bus Handbook, Digital Equipment Corporation, 1979.

Microsystems Handbook, Digital Equipment Corporation, 1985.

D-1

APPENDIX E

GLOSSARY OF ABBREVIATIONS/MNEMONICS

141SEL
141TPREQ

141XFER

ACK
ARDY
ARESET
ATN

BSYIN

C/D

cC
CCMUX
CMDXFER
CREG C

DACK
DATN
DCLK
DDACK

DDREQ
DIRC
DMA
DMAXFER
DMSG

DREQ
DRST
DSP
DTACK

DTREQ

EXP
FPC
1o

INT1
ISR

Am29PL141 Selection (SCSI)
Am29PL141 Tape Request
(QIC-02) Signal

Am29PL141 Transfer
(QIC-02) Signal

Acknowledge
Asynchronous Ready Line
Asynchronous Reset
Attention

Busy Input (SCSI to FPC)

Control or Data, SCSI Interface Signal

Condition Code (Input to FPC)
Condition Code MUX to Am29PL141
Command Transfer Routine
Register in Am29PL141

(Count Register)

Disk Acknowledge (SCSI)

Disk Attention (SCSI)

Diagnostics Clock

Disk (SCSI) DMA Acknowledge

(to Am29PL141 from 80188)

Disk DMA Request

Direction (QIC-02)

Direct Memory Access

DMA Transfer Routine

Disk (SCSI) Message = MSG C/D (to
Int. Status Buffer from Am29PL141)
Disk (Data Transfer) Request

(to Am29PL 141 from SCSI)

Disk Reset (SCSI)

Digital Signal Processor

DMA Tape Acknowledge

(to Am29PL141 from 80188)

DMA Tape Request

(to 80188 from Addressable Latch)

Exception, QIC-02 Interface Signal
Fuse Programmable Controller
Input or Output

Interrupt Number One
Interrupt Status Register

JEDEC

LADDR
LAN
LMCS
LPC

MCSM
MSG

MSI
NPR

PCS
PL
POL

RDXFER
RDY
RST

SCSI
SDI
SDO
SIC-02
SSR

TACK
TEST41
TOUT
TPONL
TPRST
TRDY
TRINT
UMCS

VCMD

WRXFER

Joint Electronic Device Engineering
Council

Addressable Latch

Local Area Network

Lower Memory Chip Select
Linear Predictive Coding

, Mid-range Chip Select

Message SCSI Interface Signal
(to Am29PL141 from SCSI)
Medium Scale Integration

Non-processor Request

Peripheral Chip Select
Pipeline
Polarity

Read Transfer Routine
Ready
Reset

Small Computer System Interface
Serial Data In

Serial Data Out

Quarter-inch Tape Cartridge Interface
Serial Shadow Register

Tape Acknowledge

(to Am29PL141 from QIC-02)
Am29PL141 Test Vector Generator
Program

Time Out

Tape On Line (QIC-02)

Tape Reset (QIC-02)

Tape Ready (QIC-02)

Tape Ready Interrupt (Addressable
Latch to Condition Code MUX)

Upper memory Chip Select

Valid Command (to Am29PL141
from 80188)

Wirite Transfer Routine

E-1

APPENDIX F

Am29CPL100 DATA SHEETS

The front pages of the latest 29CPL100-famil

y data sheets are reprinted in this section. Complete copies

of these technical documents are available from AMD sales offices or authorized representatives.

Am29CPL141/Am29CPL151

CMOS Field-Programmable Controller (FPC)

¢\

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

Implements complex state machines
High-speed, low-power CMOS EPROM
technology

Direct plug-in replacement for the bipolar
Am29PL141

Seven conditional inputs (each can be
registered as a programmable option), 16
outputs

64-word by 32-bit CMOS EPROM

Up to 30-MHz clock rate

Avallable In a wide selection of 28-pin
packages

0.6" CERDIP windowed, 0.3" CERDIP windowed,
0.3" plastic DIP OTP, PLCC OTP

29 Instructions

Conditional brariching, conditional looping, condi-
tional subroutine call, multiway branch

GENERAL DESCRIPTION

The Am29CPL141, a direct plug-in replacement for the
Am29PL141, is a CMOS, single-chip, Field-Program-
mable Controller (FPC). It allows implementation of
complex state machines and controllers by program-
ming the appropriate sequence of instructions. Jumps,
loops, and subroutine calls, conditionally executed
based on the test inputs, provide the designer with
powerful control flow primitives.

Intelligent control may be distributed throughout the
system by using FPCs to control various self-contained
functional units, such as register file/ALU, /O, interrupt,
diagnostic, and bus control units. An Address se-
quencer, the heart of the FPC, provides the address to

an internal 64-word by 32-bit EPROM.

The Am29CPL151 is electrically and functionally identi-
cal to the Am29CPL141 but is manufactured in a space-
saving 300 mil DIP package as well as being offered in
surface mount packaging.

This UV-erasable and reprogrammable device utilizes
proven floating-gate CMOS EPROM technology to en-
sure high reliability, easy programming, and better than
99.9% programming yields. The Am29CPL141/151 is
offered in both windowed and One-Time Programmable
(OTP) packages. OTP glastic DIP and PLCC devices
are ideal for volume production.

SIMPLIFIED BLO

K DIAGRAM

~u et 1

CONDITION*
TESTS

=L

ADDRESS
SEQUENCER

<7

64 X 32
PROGRAM MEMOR
EPROM

r

10135-001A

SERIAL SHADOW REGIS&F)EB‘_
| ERAL !
= IN
- —r

PIPELINE REGISTER

- DCLK
|¢—— CLK

16 |
*Each condition test input can be individually

registered as a programmable option; the RESET
input can be registered as a programmable option.

{%
P[15:0]

Publication # Rev. Amendment
10135 B 0
Issue Date: October 1988

Am29CPL142/Am29CPL152

CMOS Field-Programmable Controller (FPC)

ADVANCE INFORMATION

DISTINCTIVE CHARACTERISTICS

Implements complex state machines

High speed, low power CMOS EPROM technology
Eight conditional inputs, 16 outputs

Each input can be registered or left unregistered as a
programmable option

128-word by 34-bit CMOS EPROM

Up to 25-MHz clock rate, 28-pin DIP and PLCC
® 28 instructions

- Conditional branching

- Conditional looping

- Conditional subroutine call

- Multiway branch

Output instruction presents counter contents at the
control outputs for implementing a larger class of state-
machine designs

A controller-expansion (EXP) cell provides address to
external registered PROMs allowing more than 16
outputs

Am29CPL142 is packaged in a 28-pin 0.6'" DIP for
upgrade of existing designs

Am29CPL152 is packaged in a space-saving 28-pin
0.3" DIP or 28-pin PLCC for new designs

SIMPLIFIED BLOCK DIAGRAM

CONDITION"

RESET" CC' TESTS

REGISTER

7

U

ADDRESS SEQUENCER

<

128 x 34
PROGRAM MEMORY

SERIAL SHADOW REGISTER

CLK

PIPELINE REGISTER

Vo L

BD007542

* Each test input can be individually unregistered or left registered as a programmable option.
The RESET input can also be unregistered as a programmable option.

This document contains information on a product under development at Advanced Micro Devices, Inc. Publication # Rev. Amendment
The information is intended to help you to evaluate this product. AMD reserves the right to change or 10796 /0

discontinue work on this proposed product without notice.

F-3

Issue Date: November 1988

Am29CPL144/Am29CPL154

CMOS Field-Programmable Controller (FPC)

ADVANCE INFORMATION

DISTINCTIVE CHARACTERISTICS

Implements complex state machines

High-speed, low-power CMOS EPROM technology

8 conditional inputs, 16 outputs

Each input can be registered or left unregistered as a
programmable option

512-word by 36-bit CMOS EPROM

25-MHz clock rate

Am29CPL144 is packaged in a 28-pin 0.6" DIP for
upgrade of existing designs

Am29CPL154 is packaged in a space-saving 28-pin
0.3" DIP or 28-pin PLCC for new designs

® 28 instructions

- Conditional branching

- Conditional looping

- Conditional subroutine call
— Multiway branch

® Output instruction presents counter contents at the

control outputs for implementing a larger class of state-
machine designs

A controller-expansion (EXP) cell provides address to
external registered PROMs allowing more than 16
outputs

SIMPLIFIED BLOCK DIAGRAM

RESET"

»{> REGISTER

CONDITION*
TESTS

8

Address Sequencer

512x 36
Program Memory
EPROM

Serial Shadow Register

IN —»f
MODE —»i .
DCLK —»i

| Pipeline Register
CLK >
16 20!
P[15:0)
10138A-007A

BD007930

*Each test input can be individually unregistered or left registered as a programmable option. The RESET
input can also be registered as a programmable option.

This document contains .information on a product under development at Advanced Micro Devices,

Publication # Rev. Amendment

Inc. The information is intended to help you to evaluate this product. AMD reserves
the right to change or discontinue work on this proposed product without notice.

10136 B /0
Issue Date: October 1988

SSR is a trademark of Advanced Micro Devices, Inc.
F-4

'

ADVANCED

MICRO

DEVICES, INC.

901 Thompson Place
PO. Box 3453
Sunnyvale,
California 94088-3453
(408) 732-2400
TWX: 910-339-9280
TELEX: 34-6306
TOLL-FREE

(800) 538-8450

APPLICATIONS

HOTLINE
(800) 222-9323
(408) 749-5703

Printed in USA
06591B

